Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plants (Basel) ; 13(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39065475

RESUMEN

Archaeological excavations led by Yung-jo Lee and Jong-yoon Woo were carried out twice at the Sorori paleolithic site, Cheongju, in the Republic of Korea, at the upper stream of the Geumgang river, the Miho riverside. A total of 127 rice seeds were excavated, including 18 ancient rice and 109 Quasi-rice, in 1998 and 2001. At the first excavation, eleven short japonica-type ancient rice and one slender smooth ancient rice with two kinds of Quasi-rice were excavated. The average length of the 11 short rice grains obtained from the first and second excavation was 7.19 mm and the average width was 3.08 mm, respectively. The Quasi-rice are apparently different from the rice and do not have bi-peak protuberances on their glume surface. At the second excavation, six short ancient rice chaffs and some Quasi-rice 2 were found. These short-grained ancient rice were comparable to the ancient rice that were excavated at the Illsan Neolithic site. Geologists and radiologists confirmed that the peat layer in which the rice found was older than 15,000 years. In this study, the morphological characteristics, crushing, and DNA band patterns related to the genetic polymorphism of rice grains in Cheongju Sorori were compared and analyzed for genetic similarities and differences with wild rice, weed rice, and modern rice. The morphological, ecological, and physiological variations in rice grains excavated from the Sorori site were presumed to denote the origin of rice domestication in Korea. It is also suggested that the results of the DNA sequencing of excavated rice are very important clues in estimating the origin of the early domestication of rice.

2.
Plant J ; 119(3): 1369-1385, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824648

RESUMEN

Gibberellins (GAs) play crucial roles in regulating plant architecture and grain yield of crops. In rice, the inactivation of endogenous bioactive GAs and their precursors by GA 2-oxidases (GA2oxs) regulates stem elongation and reproductive development. However, the regulatory mechanisms of GA2ox gene expression, especially in rice reproductive organs, are unknown. The BEL1-like homeodomain protein OsBLH4, a negative regulatory factor for the rice OsGA2ox1 gene, was identified in this study. Loss of OsBLH4 function results in decreased bioactive GA levels and pleiotropic phenotypes, including reduced plant height, decreased grain number per panicle, and delayed heading date, as also observed in OsGA2ox1-overexpressing plants. Consistent with the mutant phenotype, OsBLH4 was predominantly expressed in shoots and young spikelets; its encoded protein was exclusively localized in the nucleus. Molecular analysis demonstrated that OsBLH4 directly bound to the promoter region of OsGA2ox1 to repress its expression. Genetic assays revealed that OsBLH4 acts upstream of OsGA2ox1 to control rice plant height, grain number, and heading date. Taken together, these results indicate a crucial role for OsBLH4 in regulating rice plant architecture and yield potential via regulation of bioactive GA levels, and provide a potential strategy for genetic improvements of rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Giberelinas , Proteínas de Homeodominio , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Giberelinas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Oxigenasas de Función Mixta
3.
Sci Data ; 11(1): 342, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580686

RESUMEN

Silybum marianum (L.) Gaertn., commonly known as milk thistle, is a medicinal plant belonging to the Asteraceae family. This plant has been recognized for its medicinal properties for over 2,000 years. However, the genome of this plant remains largely undiscovered, having no reference genome at a chromosomal level. Here, we assembled the chromosome-level genome of S. marianum, allowing for the annotation of 53,552 genes and the identification of transposable elements comprising 58% of the genome. The genome assembly from this study showed 99.1% completeness as determined by BUSCO assessment, while the previous assembly (ASM154182v1) showed 36.7%. Functional annotation of the predicted genes showed 50,329 genes (94% of total genes) with known protein functions in public databases. Comparative genome analysis among Asteraceae plants revealed a striking conservation of collinearity between S. marianum and C. cardunculus. The genomic information generated from this study will be a valuable resource for milk thistle breeding and for use by the larger research community.


Asunto(s)
Genoma de Planta , Silybum marianum , Fitomejoramiento , Plantas Medicinales/genética , Silybum marianum/genética , Cromosomas de las Plantas
4.
Front Plant Sci ; 14: 1226297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662146

RESUMEN

Phosphorus use efficiency (PUE) is a complex trait, governed by many minor quantitative trait loci (QTLs) with small effects. Advances in molecular marker technology have led to the identification of QTLs underlying PUE. However, their practical use in breeding programs remains challenging due to the unstable effects in different genetic backgrounds and environments, interaction with soil status, and linkage drag. Here, we compiled PUE QTL information from 16 independent studies. A total of 192 QTLs were subjected to meta-QTL (MQTL) analysis and were projected into a high-density SNP consensus map. A total of 60 MQTLs, with significantly reduced number of initial QTLs and confidence intervals (CI), were identified across the rice genome. Candidate gene (CG) mining was carried out for the 38 MQTLs supported by multiple QTLs from at least two independent studies. Genes related to amino and organic acid transport and auxin response were found to be abundant in the MQTLs linked to PUE. CGs were cross validated using a root transcriptome database (RiceXPro) and haplotype analysis. This led to the identification of the eight CGs (OsARF8, OsSPX-MFS3, OsRING141, OsMIOX, HsfC2b, OsFER2, OsWRKY64, and OsYUCCA11) modulating PUE. Potential donors for superior PUE CG haplotypes were identified through haplotype analysis. The distribution of superior haplotypes varied among subspecies being mostly found in indica but were largely scarce in japonica. Our study offers an insight on the complex genetic networks that modulate PUE in rice. The MQTLs, CGs, and superior CG haplotypes identified in our study are useful in the combination of beneficial alleles for PUE in rice.

5.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37511600

RESUMEN

Melanin production is an important process that prevents the host skin from harmful ultraviolet radiation; however, an overproduction of melanin results in skin diseases. In the present study, we determined the antioxidative and anti-melanogenic activities of polyphenol- and flavonoid-enriched rice seed extracts in melan-a cells. The polyphenol and flavonoid content of Hopum (HP) and Sebok (SB) rice seed extracts was measured. The antioxidant capacity was determined using the ABTS radical scavenging method. SB contained high amounts of polyphenols and flavonoids, which significantly increased antioxidative activity compared with HP. Various concentrations of these extracts were evaluated in a cytotoxicity using melan-a cells. At 100 µg/mL, there was no significant difference for all treatments compared with untreated cells. Therefore, 100 µg/mL was selected as a concentration for the further experiments. SB significantly suppressed the phosphorylation/activation of p-38 MAPK, increased the expression of phosphorylated ERK 1/2 and Akt, and downregulated the microphthalmia-associated transcription factor (MITF). This resulted in decreased levels of tyrosinase and tyrosinase-related protein-1 and -2. These results indicate the potential of polyphenol- and flavonoid-enriched rice seed as a treatment for hyperpigmentation.


Asunto(s)
Melaninas , Oryza , Melaninas/metabolismo , Flavonoides/farmacología , Polifenoles/farmacología , Regulación hacia Abajo , Oryza/metabolismo , Transducción de Señal , Factor de Transcripción Asociado a Microftalmía/metabolismo , Antígeno MART-1/metabolismo , Antígeno MART-1/farmacología , Rayos Ultravioleta , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/farmacología , Línea Celular Tumoral
6.
Plants (Basel) ; 12(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37514316

RESUMEN

Milk thistle (Silybum marianum) belongs to the Asteraceae family and is a medicinal plant native to the Mediterranean Basin. Silymarin in achene is a widely used herbal product for chronic liver disease. There is growing interest in natural medicine using milk thistle in Korea, but the raw material completely relies on imports. Despite its economic importance, phenotypic evaluations of native resources of milk thistle in Korea have not been carried out. In addition, genomic research and molecular marker development are very limited in milk thistle. In this study, we evaluated 220 milk thistle resources consisting of 172 accessions collected from the domestic market, and 48 accessions isolated from 6 accessions distributed by the National Agrobiodiversity Center in Korea. Six plant characteristics (height, seed weight, number of flowers, seed weight per flower, spine length, and color at harvest) were measured, and six samples (M01-M06) were selected to represent the genetic diversity of the population for genomic research. To develop PCR-based and co-dominant insertion/deletion (InDel) markers, we performed genome-wide InDel detection by comparing the whole-genome resequencing data of the six selected accessions with the reference genome sequence (GCA_001541825). As a result, 177 InDel markers with high distinguishability and reproducibility were selected from the 30,845 InDel variants. Unknowingly imported alien plant resources could easily be genetically mixed, and jeopardized seed purity can cause continuous difficulties in the development of high value-added agricultural platforms utilizing natural products. The selected plant materials and 177 validated InDel markers developed via whole-genome resequencing analysis could be valuable resources for breeding, conservation, and ecological studies of natives to Korea, along with acceleration of Silybum marianum industrialization.

8.
Front Genet ; 13: 1036747, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568369

RESUMEN

Heading date (Hd) is one of the main factors determining rice production and regional adaptation. To identify the genetic factors involved in the wide regional adaptability of rice, we conducted a genome-wide association study (GWAS) with 190 North Korean rice accessions selected for non-precocious flowering in the Philippines, a low-latitude region. Using both linear mixed models (LMM) and fixed and random model circulating probability unification (FarmCPU), we identified five significant loci for Hd in trials in 2018 and 2019. Among the five lead single nucleotide polymorphisms (SNPs), three were located adjacent to the known Hd genes, Heading date 3a (Hd3a), Heading date 5 (Hd5), and GF14-c. In contrast, three SNPs were located in novel loci with minor effects on heading. Further GWAS analysis for photoperiod insensitivity (PS) revealed no significant genes associated with PS, supporting that this North Korean (NK) population is largely photoperiod-insensitive. Haplotyping analysis showed that more than 80% of the NK varieties harbored nonfunctional alleles of major Hd genes investigated, of which a nonfunctional allele of Heading date 1 (Hd1) was observed in 66% of the varieties. Geographical distribution analysis of Hd allele combination types showed that nonfunctional alleles of floral repressor Hd genes enabled rice cultivation in high-latitude regions. In contrast, Hd1 alleles largely contributed to the wide regional adaptation of rice varieties. In conclusion, an allelic combination of Hd genes is critical for rice cultivation across wide areas.

9.
Proc Natl Acad Sci U S A ; 119(50): e2210338119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36472959

RESUMEN

Salt stress impairs nutrient metabolism in plant cells, leading to growth and yield penalties. However, the mechanism by which plants alter their nutrient metabolism processes in response to salt stress remains elusive. In this study, we identified and characterized the rice (Oryza sativa) rice salt tolerant 1 (rst1) mutant, which displayed improved salt tolerance and grain yield. Map-based cloning revealed that the gene RST1 encoded an auxin response factor (OsARF18). Molecular analyses showed that RST1 directly repressed the expression of the gene encoding asparagine synthetase 1 (OsAS1). Loss of RST1 function increased the expression of OsAS1 and improved nitrogen (N) utilization by promoting asparagine production and avoiding excess ammonium (NH4+) accumulation. RST1 was undergoing directional selection during domestication. The superior haplotype RST1Hap III decreased its transcriptional repression activity and contributed to salt tolerance and grain weight. Together, our findings unravel a synergistic regulator of growth and salt tolerance associated with N metabolism and provide a new strategy for the development of tolerant cultivars.


Asunto(s)
Aspartatoamoníaco Ligasa , Oryza , Tolerancia a la Sal/genética , Oryza/genética , Aspartatoamoníaco Ligasa/genética , Expresión Génica
10.
Rice (N Y) ; 15(1): 22, 2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397732

RESUMEN

Successful cultivation of rice (Oryza sativa L.) in many Asian countries requires submergence stress tolerance at the germination and early establishment stages. Two quantitative trait loci, Sub1 (conferring submergence tolerance) and AG1 (conferring anaerobic germination), were recently pyramided into a single genetic background, without compromising any desirable agronomic traits, leading to the development of Ciherang-Sub1 + AG1 (CSA). However, little research has been conducted to enhance plant tolerance to abiotic stress (submergence) and biotic stress (rice blast), which occur in a damp climate following flooding. The BC2F5 breeding line was phenotypically characterized using the AvrPi9 isolate. The biotic and abiotic stress tolerance of selected lines was tested under submergence stress and anaerobic germination conditions, and lines tolerant to each stress condition were identified through phenotypic and gene expression analyses. The Ciherang-Sub1 + AG1 + Pi9 (CSA-Pi9) line showed similar agronomic performance to its recurrent parent, CSA, but had significantly reduced chalkiness in field trials conducted in temperate regions. Unexpectedly, the CSA-Pi9 line also showed salinity tolerance. Thus, the breeding line newly developed in this study, CSA-Pi9, functioned under stress conditions, in which Sub1, AG1, and Pi9 play a role and had superior grain quality traits compared to its recurrent parent in temperate regions. We speculate that CSA-Pi9 will enable the establishment of climate-resilient rice cropping systems, particularly in East Asia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA