Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Microbiol ; 23(1): 354, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980461

RESUMEN

The immunogenicity and effectiveness of oral rotavirus vaccines (ORVs) against severe rotavirus-associated gastroenteritis are impaired in low- and middle-income countries (LMICs) where the burden of disease is highest. Determining risk factors for impaired ORV response may help identify strategies to enhance vaccine effectiveness. In this study, we use metagenomic sequencing to provide a high-resolution taxonomic analysis of stool samples collected at 6 weeks of age (coinciding with the first ORV dose) during a prospective study of ORV immunogenicity in India and Malawi. We then analyse the functional capacity of the developing microbiome in these cohorts. Microbiome composition differed significantly between countries, although functional capacity was more similar than taxonomic composition. Our results confirm previously reported findings that the developing microbiome is more diverse in taxonomic composition in ORV non-seroconverters compared with seroconverters, and we additionally demonstrate a similar pattern in functional capacity. Although taxonomic or functional feature abundances are poor predictors of ORV response, we show that skews in the direction of associations within these microbiome data can be used to identify consistent markers of ORV response across LMIC infant cohorts. We also highlight the systemic under-representation of reference genes from LMICs that limit functional annotation in our study (7% and 13% annotation at pathway and enzyme commission level, respectively). Overall, higher microbiome diversity in early life may act as marker for impaired ORV response in India and Malawi, whilst a holistic perspective of functional capacity may be hidden in the "dark matter" of the microbiome.


Asunto(s)
Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Humanos , Lactante , Rotavirus/genética , Malaui , Estudios Prospectivos , Inmunogenicidad Vacunal , Infecciones por Rotavirus/prevención & control , India , Vacunas Atenuadas , Anticuerpos Antivirales
2.
Virus Evol ; 9(1): vead030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305707

RESUMEN

G3 rotaviruses rank among the most common rotavirus strains worldwide in humans and animals. However, despite a robust long-term rotavirus surveillance system from 1997 at Queen Elizabeth Central Hospital in Blantyre, Malawi, these strains were only detected from 1997 to 1999 and then disappeared and re-emerged in 2017, 5 years after the introduction of the Rotarix rotavirus vaccine. Here, we analysed representative twenty-seven whole genome sequences (G3P[4], n = 20; G3P[6], n = 1; and G3P[8], n = 6) randomly selected each month between November 2017 and August 2019 to understand how G3 strains re-emerged in Malawi. We found four genotype constellations that were associated with the emergent G3 strains and co-circulated in Malawi post-Rotarix vaccine introduction: G3P[4] and G3P[6] strains with the DS-1-like genetic backbone genes (G3-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 and G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2), G3P[8] strains with the Wa-like genetic backbone genes (G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), and reassortant G3P[4] strains consisting of the DS-1-like genetic backbone genes and a Wa-like NSP2 (N1) gene (G3-P[4]-I2-R2-C2-M2-A2-N1-T2-E2-H2). Time-resolved phylogenetic trees demonstrated that the most recent common ancestor for each ribonucleic acid (RNA) segment of the emergent G3 strains was between 1996 and 2012, possibly through introductions from outside the country due to the limited genetic similarity with G3 strains which circulated before their disappearance in the late 1990s. Further genomic analysis revealed that the reassortant DS-1-like G3P[4] strains acquired a Wa-like NSP2 genome segment (N1 genotype) through intergenogroup reassortment; an artiodactyl-like VP3 through intergenogroup interspecies reassortment; and VP6, NSP1, and NSP4 segments through intragenogroup reassortment likely before importation into Malawi. Additionally, the emergent G3 strains contain amino acid substitutions within the antigenic regions of the VP4 proteins which could potentially impact the binding of rotavirus vaccine-induced antibodies. Altogether, our findings show that multiple strains with either Wa-like or DS-1-like genotype constellations have driven the re-emergence of G3 strains. The findings also highlight the role of human mobility and genome reassortment events in the cross-border dissemination and evolution of rotavirus strains in Malawi necessitating the need for long-term genomic surveillance of rotavirus in high disease-burden settings to inform disease prevention and control.

3.
Sci Rep ; 13(1): 9001, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268634

RESUMEN

Strong CD4+ T cell-mediated immune protection following rotavirus infection has been observed in animal models, but its relevance in humans remains unclear. Here, we characterized acute and convalescent CD4+ T cell responses in children who were hospitalized with rotavirus-positive and rotavirus-negative diarrhoea in Blantyre, Malawi. Children presenting with laboratory-confirmed rotavirus infection had higher proportions of effector and central memory T helper 2 cells during acute infection i.e., at disease presentation compared to convalescence, 28 days post-infection defined by a follow-up 28 days after acute infection. However, circulating cytokine-producing (IFN-γ and/or TNF-α) rotavirus-specific VP6-specific CD4+ T cells were rarely detectable in children with rotavirus infection at both acute and convalescent stages. Moreover, following whole blood mitogenic stimulation, the responding CD4+ T cells were predominantly non-cytokine producers of IFN-γ and/or TNF-α. Our findings demonstrate limited induction of anti-viral IFN-γ and/or TNF-α-producing CD4+ T cells in rotavirus-vaccinated Malawian children following the development of laboratory-confirmed rotavirus infection.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Niño , Animales , Humanos , Infecciones por Rotavirus/prevención & control , Factor de Necrosis Tumoral alfa , Subgrupos de Linfocitos T , Citocinas , Linfocitos T CD4-Positivos
4.
J Infect Dis ; 225(12): 2127-2136, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33033832

RESUMEN

BACKGROUND: Rotavirus vaccine (Rotarix [RV1]) has reduced diarrhea-associated hospitalizations and deaths in Malawi. We examined the trends in circulating rotavirus genotypes in Malawi over a 22-year period to assess the impact of RV1 introduction on strain distribution. METHODS: Data on rotavirus-positive stool specimens among children aged <5 years hospitalized with diarrhea in Blantyre, Malawi before (July 1997-October 2012, n = 1765) and after (November 2012-October 2019, n = 934) RV1 introduction were analyzed. Rotavirus G and P genotypes were assigned using reverse-transcription polymerase chain reaction. RESULTS: A rich rotavirus strain diversity circulated throughout the 22-year period; Shannon (H') and Simpson diversity (D') indices did not differ between the pre- and postvaccine periods (H' P < .149; D' P < .287). Overall, G1 (n = 268/924 [28.7%]), G2 (n = 308/924 [33.0%]), G3 (n = 72/924 [7.7%]), and G12 (n = 109/924 [11.8%]) were the most prevalent genotypes identified following RV1 introduction. The prevalence of G1P[8] and G2P[4] genotypes declined each successive year following RV1 introduction, and were not detected after 2018. Genotype G3 reemerged and became the predominant genotype from 2017 onward. No evidence of genotype selection was observed 7 years post-RV1 introduction. CONCLUSIONS: Rotavirus strain diversity and genotype variation in Malawi are likely driven by natural mechanisms rather than vaccine pressure.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Niño , Niño Hospitalizado , Diarrea , Heces , Gastroenteritis/epidemiología , Gastroenteritis/prevención & control , Genotipo , Humanos , Lactante , Malaui/epidemiología , Rotavirus/genética , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control
5.
Viruses ; 13(12)2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34960760

RESUMEN

Rotavirus is the major cause of severe gastroenteritis in children aged <5 years. Introduction of the G1P[8] Rotarix® rotavirus vaccine in Malawi in 2012 has reduced rotavirus-associated hospitalisations and diarrhoeal mortality. However, the impact of rotavirus vaccine on the severity of gastroenteritis presented in children requiring hospitalisation remains unknown. We conducted a hospital-based surveillance study to assess the impact of Rotarix® vaccination on the severity of gastroenteritis presented by Malawian children. Stool samples were collected from children aged <5 years who required hospitalisation with acute gastroenteritis from December 2011 to October 2019. Gastroenteritis severity was determined using Ruuska and Vesikari scores. Rotavirus was detected using enzyme immunoassay. Rotavirus genotypes were determined using nested RT-PCR. Associations between Rotarix® vaccination and gastroenteritis severity were investigated using adjusted linear regression. In total, 3159 children were enrolled. After adjusting for mid-upper arm circumference (MUAC), age, gender and receipt of other vaccines, all-cause gastroenteritis severity scores were 2.21 units lower (p < 0.001) among Rotarix®-vaccinated (n = 2224) compared to Rotarix®-unvaccinated children (n = 935). The reduction in severity score was observed against every rotavirus genotype, although the magnitude was smaller among those infected with G12P[6] compared to the remaining genotypes (p = 0.011). Each one-year increment in age was associated with a decrease of 0.43 severity score (p < 0.001). Our findings provide additional evidence on the impact of Rotarix® in Malawi, lending further support to Malawi's Rotarix® programme.


Asunto(s)
Gastroenteritis/prevención & control , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/administración & dosificación , Rotavirus/inmunología , Preescolar , Heces/virología , Femenino , Gastroenteritis/epidemiología , Gastroenteritis/patología , Gastroenteritis/virología , Genotipo , Hospitalización , Humanos , Lactante , Malaui/epidemiología , Masculino , Rotavirus/clasificación , Rotavirus/genética , Rotavirus/aislamiento & purificación , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/patología , Infecciones por Rotavirus/virología , Índice de Severidad de la Enfermedad , Vacunación , Vacunas Atenuadas/administración & dosificación
6.
Nat Commun ; 12(1): 7288, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911947

RESUMEN

Identifying risk factors for impaired oral rotavirus vaccine (ORV) efficacy in low-income countries may lead to improvements in vaccine design and delivery. In this prospective cohort study, we measure maternal rotavirus antibodies, environmental enteric dysfunction (EED), and bacterial gut microbiota development among infants receiving two doses of Rotarix in India (n = 307), Malawi (n = 119), and the UK (n = 60), using standardised methods across cohorts. We observe ORV shedding and seroconversion rates to be significantly lower in Malawi and India than the UK. Maternal rotavirus-specific antibodies in serum and breastmilk are negatively correlated with ORV response in India and Malawi, mediated partly by a reduction in ORV shedding. In the UK, ORV shedding is not inhibited despite comparable maternal antibody levels to the other cohorts. In both India and Malawi, increased microbiota diversity is negatively correlated with ORV immunogenicity, suggesting that high early-life microbial exposure may contribute to impaired vaccine efficacy.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades del Recién Nacido/prevención & control , Infecciones por Rotavirus/microbiología , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/administración & dosificación , Rotavirus/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Inmunidad Materno-Adquirida , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , India , Lactante , Recién Nacido , Enfermedades del Recién Nacido/sangre , Enfermedades del Recién Nacido/microbiología , Enfermedades del Recién Nacido/virología , Malaui , Masculino , Leche Humana/química , Leche Humana/inmunología , Embarazo , Estudios Prospectivos , Rotavirus/genética , Rotavirus/fisiología , Infecciones por Rotavirus/sangre , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/inmunología , Reino Unido , Eficacia de las Vacunas , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Esparcimiento de Virus
7.
Microb Genom ; 7(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33945457

RESUMEN

Increasing antimicrobial resistance and limited alternative treatments have led to fluoroquinolone-resistant Shigella strain inclusion on the WHO global priority pathogens list. In this study we characterized multiple Shigella isolates from Malawi with whole genome sequence analysis, identifying the acquirable fluoroquinolone resistance determinant qnrS1.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Fluoroquinolonas/farmacología , Shigella/efectos de los fármacos , Shigella/genética , Secuenciación Completa del Genoma , Antibacterianos/farmacología , Genoma Bacteriano , Genotipo , Malaui , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA