Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Bioconjug Chem ; 27(7): 1614-23, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27245093

RESUMEN

The photosynthetic reaction center (RC) from the Rhodobacter sphaeroides bacterium has been covalently bioconjugated with a NIR-emitting fluorophore (AE800) whose synthesis was specifically tailored to act as artificial antenna harvesting light in the entire visible region. AE800 has a broad absorption spectrum with peaks centered in the absorption gaps of the RC and its emission overlaps the most intense RC absorption bands, ensuring a consistent increase of the protein optical cross section. The covalent hybrid AE800-RC is stable and fully functional. The energy collected by the artificial antenna is transferred to the protein via FRET mechanism, and the hybrid system outperforms by a noteworthy 30% the overall photochemical activity of the native protein under the entire range of visible light. This improvement in the optical characteristic of the photoenzyme demonstrates the effectiveness of the bioconjugation approach as a suitable route to new biohybrid materials for energy conversion, photocatalysis, and biosensing.


Asunto(s)
Colorantes Fluorescentes/química , Luz , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Transferencia de Energía , Colorantes Fluorescentes/síntesis química , Modelos Moleculares , Conformación Proteica , Rhodobacter sphaeroides
2.
Phys Chem Chem Phys ; 16(24): 12000-7, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24664104

RESUMEN

Artificial photosynthesis aims at efficient water splitting into hydrogen and oxygen, by exploiting solar light. As a priority requirement, this process entails the integration of suitable multi-electron catalysts with light absorbing units, where charge separation is generated in order to drive the catalytic routines. The final goal could be the transposition of such an asset into a photoelectrocatalytic cell, where the two half-reactions, proton reduction to hydrogen and water oxidation to oxygen, take place at two appropriately engineered photoelectrodes. We herein report a covalent approach to anchor a Co(II) water oxidation catalyst to a Ru(II) polypyridine photosensitizer unit; photophysical characterisation and the catalytic activity of such a dyad in a light activated cycle are reported, and implications for the development of regenerative systems are discussed.


Asunto(s)
Cobalto/química , Luz , Rutenio/química , Agua/química , Catálisis , Electroquímica , Oxidación-Reducción , Fármacos Fotosensibilizantes/química
3.
Chemistry ; 20(12): 3427-38, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24677609

RESUMEN

We describe the thermodynamic characterisation of the self-sorting process experienced by two homodimers assembled by hydrogen-bonding interactions through their cyclopeptide scaffolds and decorated with Zn-porphyrin and fullerene units into a heterodimeric assembly that contains one electron-donor (Zn­porphyrin) and one electron-acceptor group (fullerene). The fluorescence of the Zn-porphyrin unit is strongly quenched upon heterodimer formation. This phenomenon is demonstrated to be the result of an efficient photoinduced electron-transfer (PET) process occurring between the Zn-porphyrin and the fullerene units of the heterodimeric system. The recombination lifetime of the charge-separated state of the heterodimer complex is in the order of 180 ns. In solution, both homo- and heterodimers are present as a mixture of three regioisomers: two staggered and one eclipsed. At the concentration used for this study, the high stability constant determined for the heterodimer suggests that the eclipsed conformer is the main component in solution. The application of the bound-state scenario allowed us to calculate that the heterodimer exists mainly as the eclipsed regioisomer (75-90 %). The attractive interaction that exists between the donor and acceptor chromophores in the heterodimeric assembly favours their arrangement in close contact. This is confirmed by the presence of charge-transfer bands centred at 720 nm in the absorption spectrum of the heterodimer. PET occurs in approximately 75% of the chromophores after excitation of both Zn-porphyrin and fullerene chromophores. Conversely, analogous systems, reported previously, decorated with extended tetrathiafulvalene and fullerene units showed a PET process in a significantly reduced extent (33%). We conclude that the strength (stability constant (K) x effective molarity (EM)) of the intramolecular interaction established between the two chromophores in the Zn-porphyrin/fullerene cyclopeptide-based heterodimers controls the regioisomeric distribution and regulates the high extent to which the PET process takes place in this system.


Asunto(s)
Metaloporfirinas/química , Péptidos Cíclicos/química , Zinc/química , Transporte de Electrón , Enlace de Hidrógeno , Estructura Molecular , Fotoquímica
4.
Chemistry ; 20(1): 202-16, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24339058

RESUMEN

The synthesis, electrochemical, and photophysical properties of five multicomponent systems featuring a Zn(II) porphyrin (ZnP) linked to one or two anilino donor-substituted pentacyano- (PCBD) or tetracyanobuta-1,3-dienes (TCBD), with and without an interchromophoric bridging spacer (S), are reported: ZnP-S-PCBD (1), ZnP-S-TCBD (2), ZnP-TCBD (3), ZnP-(S-PCBD)2 (4), and ZnP-(S-TCBD)2 (5). By means of steady-state and time-resolved absorption and luminescence spectroscopy (RT and 77 K), photoinduced intramolecular energy and electron transfer processes are evidenced, upon excitation of the porphyrin unit. In systems equipped with the strongest acceptor PCBD and the spacer (1, 4), no evidence of electron transfer is found in toluene, suggesting ZnP→PCBD energy transfer, followed by ultrafast (<10 ps) intrinsic deactivation of the PCBD moiety. In the analogous systems with the weaker acceptor TCBD (2, 5), photoinduced electron transfer occurs in benzonitrile, generating a charge-separated (CS) state lasting 2.3 µs. Such a long lifetime, in light of the high Gibbs free energy for charge recombination (ΔG(CR)=-1.39 eV), suggests a back-electron transfer process occurring in the so-called Marcus inverted region. Notably, in system 3 lacking the interchromophoric spacer, photoinduced charge separation followed by charge recombination occur within 20 ps. This is a consequence of the close vicinity of the donor-acceptor partners and of a virtually activationless electron transfer process. These results indicate that the strongly electron-accepting cyanobuta-1,3-dienes might become promising alternatives to quinone-, perylenediimide-, and fullerene-derived acceptors in multicomponent modules featuring photoinduced electron transfer.

5.
Photochem Photobiol Sci ; 12(10): 1749-53, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23900713

RESUMEN

Three porphyrin-cobaloxime dyads, suitable for application in photoinduced hydrogen generation with sacrificial donors, are characterized by ultrafast spectroscopy in order to clarify the primary photochemical events.


Asunto(s)
Hidrógeno/química , Compuestos Organometálicos/química , Procesos Fotoquímicos , Porfirinas/química , Complejos de Coordinación/química , Cristalografía por Rayos X , Conformación Molecular , Espectrometría de Fluorescencia
6.
Chemistry ; 19(28): 9261-71, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23733746

RESUMEN

A noble-metal-free system for photochemical hydrogen production is described, based on ascorbic acid as sacrificial donor, aluminium pyridyl porphyrin as photosensitizer, and cobaloxime as catalyst. Although the aluminium porphyrin platform has docking sites for both the sacrificial donor and the catalyst, the resulting associated species are essentially inactive because of fast unimolecular reversible electron-transfer quenching. Rather, the photochemically active species is the fraction of sensitizer present, in the aqueous/organic solvent used for hydrogen evolution, as free species. As shown by nanosecond laser flash photolysis experiments, its long-lived triplet state reacts bimolecularly with the ascorbate donor, and the reduced sensitizer thus formed, subsequently reacts with the cobaloxime catalyst, thereby triggering the hydrogen evolution process. The performance is good, particularly in terms of turnover frequencies (TOF=10.8 or 3.6 min(-1), relative to the sensitizer or the catalyst, respectively) and the quantum yield (Φ=4.6%, that is, 9.2% of maximum possible value). At high sacrificial donor concentration, the maximum turnover number (TON=352 or 117, relative to the sensitizer or the catalyst, respectively) is eventually limited by hydrogenation of both sensitizer (chlorin formation) and catalyst.

7.
Inorg Chem ; 52(6): 3190-7, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23461643

RESUMEN

We demonstrate here that, whereas the rhenium(I)-zinc porphyrin dyad fac-[Re(CO)3(bpy)(Zn·4'MPyP)](CF3SO3) [1; 4'MPyP = 5-(4'-pyridyl)-10,15,20-triphenylporphyrin] shows no evidence for photoinduced electron transfer upon excitation in the visible region because the charge-separated state ZnP(+)-Re(-) is almost isoenergetic with the singlet excited state of the zinc porphyrin (ΔG = -0.05 eV), the introduction of electron-withdrawing ethyl ester groups on the bpy ligand significantly improves the thermodynamics of the process (ΔG = -0.42 eV). As a consequence, in the new dyad fac-[Re(CO)3(4,4'-DEC-bpy)(Zn·4'MPyP)](CF3SO3) (4; 4,4'-DEC-bpy = 4,4'-diethoxycarbonyl-2,2'-bipyridine), an efficient and ultrafast intramolecular electron-transfer process occurs from the excited zinc porphyrin to the rhenium unit upon excitation with visible light. Conversely, the introduction of electron-donor tert-butyl groups on the meso-phenyl moieties of the zinc porphyrin has a negligible effect on the photophysics of the system. For dyad 4, the time constants for the charge-separation and charge-recombination processes in solvents of different polarity (PrCN, DCM, and toluene) were measured by an ultrafast time-resolved absorption technique (λ(exc) = 560 nm).

8.
Chemistry ; 18(43): 13651-64, 2012 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-22969018

RESUMEN

A novel, highly stable photochromic dyad 3 based on a perylene bisimide (PBI) fluorophore and a diarylethene (DAE) photochrome was synthesized and the optical and photophysical properties of this dyad were studied in detail by steady-state and time-resolved ultrafast spectroscopy. This photochromic dyad can be switched reversibly by UV-light irradiation of its ring-open form 3 o leading to the ring-closed form 3 c, and back reaction of 3 c to 3 o by irradiation with visible light. Solvent-dependent fluorescence studies revealed that the emission of ring-closed form 3 c is drastically quenched in solvents of medium (e.g., chloroform) to high (e.g., acetone) polarities, while the emission of the ring-open form 3 o is appreciably quenched only in highly polar solvents like DMF. The strong fluorescence quenching of 3 c is attributed to a photoinduced electron-transfer (PET) process from the excited PBI unit to ring-closed DAE moiety, as this process is thermodynamically highly favorable with a Gibbs free energy value of -0.34 eV in dichloromethane. The electron-transfer mechanism for the fluorescence quenching of ring-closed 3 c is substantiated by ultrafast transient measurements in dichloromethane and acetone, revealing stabilization of charge-separated states of 3 c in these solvents. Our results reported here show that the new photochromic dyad 3 has potential for nondestructive read-out in write/read/erase fluorescent memory systems.

9.
J Phys Chem A ; 116(1): 119-31, 2012 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-22103466

RESUMEN

A series of dyads of general formula Ru(bpy)(2)(bpy-ph(n)-DQ)(4+) (n = 1-5), based on a Ru(II) polypyridine unit as photoexcitable donor, a set of oligo-p-phenylene bridges with 1-5 modular units, and a cyclo-diquaternarized 2,2'-bipyridine (DQ(2+)) as electron acceptor unit, have been synthesized. Their spectroscopic and photophysical properties have been investigated in CH(3)CN and CH(2)Cl(2) by time-resolved emission and absorption spectroscopy in the nanosecond and picosecond time scale. The experimental study has also been complemented with a computational investigation carried out on the whole series of dyads. The absorption spectra of the dyads show new spectroscopic transitions, in addition to those characteristic of the donor, bridge, and acceptor fragments. DFT calculations suggest the assignment of such bands as bridge-to-acceptor (π ph(n)) → (π* DQ) charge-transfer transitions. This assignment is consistent with the solvatochromic and spectroelectrochemical behavior of the new bands. For all the dyads at room temperature in fluid solution, the typical (3)MLCT luminescence of the Ru(II) polypyridine unit is strongly (>90%) quenched, supporting the occurrence of an efficient intramolecular photoinduced electron transfer. The study has revealed, however, that the photophysical mechanism is actually more complex than presumed on the basis of a simple photoinduced electron-transfer scheme. For n = 1, very fast (few picoseconds) photoinduced electron transfer from the MLCT state localized on the substituted bpy ligand to the DQ unit has been observed, followed by slower interligand hopping and charge recombination. For n = 2-5, MLCT excited-state quenching takes place without transient detection of charge-separated product, indicating that charge recombination is faster than charge separation. This behavior can be rationalized in terms of the superexchange couplings expected through this type of bridges for the two processes. The kinetics of MLCT quenching in the dyads with n = 1-5 does not follow the usual exponential falloff with bridge length: after a regular decrease for n = 1-3, the rate constants become almost insensitive to bridge length for n = 3-5. The rationale of this uncommon behavior, as suggested by DFT calculations, lies in a switch in the MLCT quenching mechanism with increasing bridge length, from oxidative quenching by the DQ acceptor to reductive quenching by the bridge.

10.
Chemistry ; 16(30): 9140-53, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20593446

RESUMEN

Two families of dyad and triad systems based on perylene monoimide (PMI), quaterthiophene (QT), and 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene (extended tetrathiafulvalene, exTTF) molecular components have been designed and synthesized. The dyads (D1 and D2) are of the PMI-QT type and the triads (T1 and T2) of the PMI-QT-exTTF type. The two families differ in the saturated or unsaturated nature of the linker groups (ethynylene in D1 and T1, ethylene in D2 and T2) that bridge the molecular components. The dyads and triads have been characterized by electrochemical, photophysical, and computational methods. Both the experimental and the computational (DFT) results indicate that in the unsaturated systems strong intercomponent interactions lead to substantial perturbation of the properties of the subunits. In particular, in T1, delocalization is particularly effective between the QT and exTTF units, which would be better viewed combined as a single electronic subsystem. For the dyad systems, the photophysics observed following excitation of the PMI unit is solvent-dependent. In moderately polar solvents (dichloromethane, diethyl ether) fast charge separation is followed by recombination to the ground state. In toluene, slow conversion to the charge-separated state is followed by intersystem crossing and recombination to yield the triplet state of the PMI unit. The behavior of the triads, on the other hand, is remarkably similar to that of the corresponding dyads, which indicates that, after primary charge separation, hole shift from the oxidized QT component to exTTF is quite inefficient. This unexpected result has been rationalized on the basis of the anomalous (simultaneous two-electron oxidation) electrochemistry of exTTF and with the help of DFT calculations. In fact, although exTTF is electrochemically easier to oxidize than QT by around 0.6 V, the one-electron redox orbitals (HOMOs) of the two units in triad T2 are almost degenerate.

11.
J Phys Chem B ; 114(45): 14495-504, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-20524702

RESUMEN

Two new supramolecular boxes, (ZnMC)(2)(rPBI)(2) and (ZnMC)(2)(gPBI)(2), have been obtained by axial coordination of N,N'-dipyridyl-functionalized perylene bisimide (PBI) dyes to the zinc ion centers of two 2+2 porphyrin metallacycles (ZnMC = [trans,cis,cis-RuCl(2)(CO)(2)(Zn·4'-cis-DPyP)](2)). The two molecular boxes involve PBI pillars with different substituents at the bay area: the "red" PBI (rPBI = N,N'-di(4-pyridyl)-1,6,7,12-tetra(4-tert-butylphenoxy)perylene-3,4:9,10-tetracarboxylic acid bisimide) containing tert-butylphenoxy substituents and the "green" PBI (gPBI = N,N'-di(4-pyridyl)-1,7-bis(pyrrolidin-1-yl)perylene-3,4:9,10-tetracarboxylic acid bisimide) bearing pyrrolidinyl substituents. Due to the rigidity of the modules and the simultaneous formation of four pyridine-zinc bonds, these discrete adducts self-assemble quantitatively and are remarkably stable in dichloromethane solution. The photophysical behavior of the new supramolecular boxes has been studied in dichloromethane by emission spectroscopy and ultrafast absorption techniques. A different photophysical behavior is observed for the two systems. In (ZnMC)(2)(rPBI)(2), efficient electron transfer quenching of both perylene bisimide and zinc porphyrin chromophores is observed, leading to a charge separated state, PBI(-)-Zn(+), in which a perylene bisimide unit is reduced and zinc porphyrin is oxidized. In the deactivation of the perylene bisimide localized excited state, an intermediate zwitterionic charge transfer state of type PBI(-)-PBI(+) seems to play a relevant role. In (ZnMC)(2)(gPBI)(2), singlet energy transfer from the Zn porphyrin chromophores to the perylene bisimide units occurs with an efficiency of 0.7. This lower than unity value is due to a competing electron transfer quenching, leading to the charge separated state PBI(-)-Zn(+). The distinct photophysical behavior of these two supramolecular boxes is interpreted in terms of energy changes occurring upon replacement of the "red" rPBI by "green" gPBI.


Asunto(s)
Imidas/química , Metaloporfirinas/química , Perileno/análogos & derivados , Procesos Fotoquímicos , Colorantes/química , Perileno/química , Espectrofotometría Ultravioleta , Zinc/química
12.
J Phys Chem B ; 114(45): 14273-82, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-20067230

RESUMEN

The photophysical behavior of a series of heterometallic arrays made of a central Sn(IV) porphyrin connected, respectively, to two (SnRu(2)), four (SnRu(4)), or six (SnRu(6)) ruthenium porphyrin units has been studied in dichloromethane. Two different motifs connect the ruthenium porphyrin units to central tin porphyrin core, axial coordination via ditopic bridging ligands and/or coordination to peripheral pyridyl groups of the central porphyrin ring. A remarkable number of electron transfer processes (photoinduced charge separation and recombination processes) have been time-resolved using a combination of emission spectroscopy and fast (nanosecond) and ultrafast (femtosecond) absorption techniques. In these systems both types of molecular components can be selectively populated by light absorption. In all the arrays, the local excited states of these units (the tin porphyrin singlet excited state and the ruthenium porphyrin triplet state) are quenched by electron transfer leading to a charge-separated state where the ruthenium porphyrin unit is oxidized and the tin porphyrin unit is reduced. For each array, the two forward electron transfer processes, as well as the charge recombination process leading back to the ground state, have been kinetically resolved. The rate constants obey standard free-energy correlations with the forward processes lying in the normal free-energy regime and the back reactions in the Marcus inverted region. The comparison between the trimeric (SnRu(2)) and pentameric (SnRu(4)) arrays shows that all the electron transfer processes are faster in the latter than in the former system. This can be rationalized in terms of differences in electronic factors (due to the different connecting motifs) and driving force. In less polar solvents, such as toluene, the energy of the charge-separated states is substantially lifted, leading to a switch (from electron transfer to triplet energy transfer) in the deactivation mechanism of the excited ruthenium triplet.


Asunto(s)
Metaloporfirinas/química , Procesos Fotoquímicos , Rutenio/química , Estaño/química , Transporte de Electrón , Análisis Espectral , Factores de Tiempo
13.
Chemistry ; 15(35): 8825-33, 2009 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-19637165

RESUMEN

Diethylamino-substituted oligophenylenevinylene (OPV) building blocks have been prepared and used for the synthesis of two [60]fullerene-OPV dyads, F-D1 and F-D2, which exhibit different conjugation length of the OPV fragments. The electrochemical properties of these acceptor-donor dyads have been studied by cyclic voltammetry. The first reduction is always assigned to the fullerene moiety and the first oxidation centered on the diethylaniline groups of the OPV rods, thus making these systems suitable candidates for photoinduced electron transfer. Both the OPV and the fullerene-centered fluorescence bands are quenched in toluene and benzonitrile, which suggests the occurrence of photoinduced electron transfer from the amino-substituted OPVs to the carbon sphere in the dyads in both solvents. By means of bimolecular quenching experiments, transient absorption spectral fingerprints of the radical cationic species are detected in the visible (670 nm) and near-IR (1300-1500 nm) regions, along with the much weaker fullerene anion band at lambda(max)=1030 nm. Definitive evidence for photoinduced electron transfer in F-D1 and F-D2 comes from transient absorption measurements. A charge-separated state is formed within 100 ps and decays in less than 5 ns.

14.
Dalton Trans ; (20): 3964-70, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19440595

RESUMEN

Three new rod-like dinuclear Ru(ii) polypyridine compounds have been prepared and characterized and their absorption spectra, redox behaviour and photophysical properties have been investigated, by conventional steady-state absorption and luminescence spectroscopic methods and by time-resolved methods operating in the nanosecond and femtosecond time regimes. All the new species contain 1,4-bis(2,2':6',2''-terpyridin-4'-yl)benzene () as bridging ligand and 2,4-bis(2-pyridyl)-6-p-bromophenyl-1,3,5-triazine and/or 4'-(p-bromophenyl)-2,2':6',2''-terpyridine as peripheral ligands. In particular, and are symmetric dyads since the Ru(ii) ions carry identical peripheral ligands (the triazine-based ligands in and the terpyridine-based ligands in the case of ), whereas is a non-symmetric dyad since its two Ru(ii) centers carry two different peripheral ligands (for the structural formulae of the compounds, see ). The absorption spectra and redox behaviour of the new compounds indicate, that each subunit of the dyads maintain its own peculiar properties in the dinuclear system, a requisite confirming the supramolecular nature of the systems. All the species exhibit metal-to-ligand charge-transfer (MLCT) emission, both at room temperature in fluid solution and at 77 K in rigid matrix. Luminescence lifetime and transient absorption spectroscopy reveal that efficient and fast photoinduced energy transfer takes place in the non-symmetric dyad from the subunit containing the terpyridine peripheral ligand to the subunit containing the triazine-based peripheral ligand. However, given the complexity of the transient spectra and the overlapping timescales of the processes of the symmetric and non-symmetric systems, any detailed analysis of the ultrafast results aimed at the identification of specific intercomponent energy transfer steps, and therefore to kinetically characterize the directional energy transfer, appears to be speculative.

15.
J Am Chem Soc ; 130(23): 7286-99, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18479107

RESUMEN

A 1,2-bis(2-methylbenzothiophene-3-yl)maleimide model ( DAE) and two dyads in which this photochromic unit is coupled, via a direct nitrogen-carbon bond ( Ru-DAE) or through an intervening methylene group ( Ru-CH 2-DAE ), to a ruthenium polypyridine chromophore have been synthesized. The photochemistry and photophysics of these systems have been thoroughly characterized in acetonitrile by a combination of stationary and time-resolved (nano- and femtosecond) spectroscopic methods. The diarylethene model DAE undergoes photocyclization by excitation at 448 nm, with 35% photoconversion at stationary state. The quantum yield increases from 0.22 to 0.33 upon deaeration. Photochemical cycloreversion (quantum yield, 0.51) can be carried out to completion upon excitation at lambda > 500 nm. Photocyclization takes place both from the excited singlet state (S 1), as an ultrafast (ca. 0.5 ps) process, and from the triplet state (T 1) in the microsecond time scale. In Ru-DAE and Ru-CH 2-DAE dyads, efficient photocyclization following light absorption by the ruthenium chromophore occurs with oxygen-sensitive quantum yield (0.44 and 0.22, in deaerated and aerated solution, respectively). The photoconversion efficiency is almost unitary (90%), much higher than for the photochromic DAE alone. Efficient quenching of both Ru-based MLCT phosphorescence and DAE fluorescence is observed. A complete kinetic characterization has been obtained by ps-ns time-resolved spectroscopy. Besides prompt photocyclization (0.5 ps), fast singlet energy transfer takes place from the excited diarylethene to the Ru(II) chromophore (30 ps in Ru-DAE, 150 ps in Ru-CH 2-DAE ). In the Ru(II) chromophore, prompt intersystem crossing to the MLCT triplet state is followed by triplet energy transfer to the diarylethene (1.5 ns in Ru-DAE, 40 ns in Ru-CH 2-DAE ). The triplet state of the diarylethene moiety undergoes cyclization in a microsecond time scale. The experimental results are complemented with a combined ab initio and DFT computational study whereby the potential energy surfaces (PES) for ground state (S 0) and lowest triplet state (T 1) of the diarylethene are investigated along the reaction coordinate for photocyclization/cycloreversion. At the DFT level of theory, the transition-state structures on S 0 and T 1 are similar and lean, along the reaction coordinate, toward the closed-ring form. At the transition-state geometry, the S 0 and T 1 PES are almost degenerate. Whereas on S 0 a large barrier (ca. 45 kcal mol (-1)) separates the open- and closed-ring minima, on T 1 the barriers to isomerization are modest, cyclization barrier (ca. 8 kcal mol (-1)) being smaller than cycloreversion barrier (ca. 14 kcal mol (-1)). These features account for the efficient sensitized photocyclization and inefficient sensitized cycloreversion observed with Ru-DAE. Triplet cyclization is viewed as a nonadiabatic process originating on T 1 at open-ring geometry, proceeding via intersystem crossing at transition-state geometry, and completing on S 0 at closed-ring geometry. A computational study of the prototypical model 1,2-bis(3-thienyl)ethene is used to benchmark DFT results against ab initio CASSCF//CASPT2 results and to demonstrate the generality of the main topological features of the S 0 and T 1 PES obtained for DAE. Altogether, the results provide strong experimental evidence and theoretical rationale for the triplet pathway in the photocyclization of photochromic diarylethenes.

16.
J Am Chem Soc ; 130(12): 4105-13, 2008 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-18314990

RESUMEN

The synthesis, photophysical, and anion-binding properties of a series of di-, tri-, and tetrapodal anion-binding hosts based on aminopyridinium units with pyrenyl reporter groups are described. The ditopic mesitylene-derived calix[4]arene-based host 4 binds strongly to dicarboxylates, particularly malonate, in a 2:1 anion:host ratio but is essentially nonemissive in the presence of all anions except chloride because of intramolecular quenching by the pyridinium units. Addition of chloride results in a conformational change, giving an initial increase in emission assigned to intramolecular excimer formation. Further chloride addition also results in an increase in the intensity of the pyrenyl monomer emission as chloride binding reduces the acceptor ability of the pyridinium groups. This behavior is not exhibited by control compounds 5 and 6, which lack the ditopic geometry and calixarene spacer unit; however, tripodal 6 forms 1:2 anion:host complexes with a range of anions.

17.
J Phys Chem A ; 112(15): 3376-85, 2008 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-18335911

RESUMEN

The photophysics of two symmetric triads, (ZnP)2PBI and (H2P)2PBI, made of two zinc or free-base porphyrins covalently attached to a central perylene bisimide unit has been investigated in dichloromethane and in toluene. The solvent has been shown to affect not only quantitatively but also qualitatively the photophysical behavior. A variety of intercomponent processes (singlet energy transfer, triplet energy transfer, photoinduced charge separation, and recombination) have been time-resolved using a combination of emission spectroscopy and femtosecond and nanosecond time-resolved absorption techniques yielding a very detailed picture of the photophysics of these systems. The singlet excited state of the lowest energy chromophore (perylene bisimide in the case of (ZnP)2PBI, porphyrin in the case of (H2P)2PBI) is always quantitatively populated, besides by direct light absorption, by ultrafast singlet energy transfer (few picosecond time constant) from the higher energy chromophore. In dichloromethane, the lowest excited singlet state is efficiently quenched by electron transfer leading to a charge-separated state where the porphyrin is oxidized and the perylene bisimide is reduced. The systems then go back to the ground state by charge recombination. The four charge separation and recombination processes observed for (ZnP)2PBI and (H2P)2PBI in dichloromethane take place in the sub-nanosecond time scale. They obey standard free-energy correlations with charge separation lying in the normal regime and charge recombination in the Marcus inverted region. In less polar solvents, such as toluene, the energy of the charge-separated states is substantially lifted leading to sharp changes in photophysical mechanism. With (ZnP)2PBI, the electron-transfer quenching is still fast, but charge recombination takes place now in the nanosecond time scale and to triplet state products rather than to the ground state. Triplet-triplet energy transfer from the porphyrin to the perylene bisimide is also involved in the subsequent deactivation of the triplet manifold to the ground state. With (H2P)2PBI, on the other hand, the driving force for charge separation is too small for electron-transfer quenching, and the deactivation of the porphyrin excited singlet takes place via intersystem crossing to the triplet followed by triplet energy transfer to the perylene bisimide and final decay to the ground state.

18.
Inorg Chem ; 46(14): 5630-41, 2007 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-17564435

RESUMEN

A series of rodlike ruthenium(II)-rhodium(III) polypyridine dyads based on modular oligo-p-phenylene bridges, of the general formula [(Me2phen)2Ru-bpy-(ph)n-bpy-Rh(Me2bpy)]5+ (Me2phen=4,7-dimethyl-1,10-phenanthroline; bpy=2,2'-bipyridine; ph=1,4-phenylene; n=1-3), have been synthesized and their photophysical properties investigated. The dyad [(Me2bpy)2Ru-bpy-(ph)3'-bpy-Rh(Me2bpy)]5+ with the central phenylene unit bearing two hexyl chains has also been studied. The metal-to-metal distance reaches 24 A for the longest (n=3) spacer in the series. For all of the dyads in a room-temperature CH3CN solution, quenching of the typical metal-to-ligand charge-transfer luminescence of the Ru-based chromophoric unit is observed, indicating that an efficient intramolecular photoinduced electron transfer from the excited Ru moiety to the Rh-based unit takes place. The rate constants for the electron-transfer process have been determined by time-resolved emission and absorption spectroscopy in the nanosecond and picosecond time scale. An exponential dependence of experimental transfer rates on the bridge length is observed, consistent with a superexchange mechanism. An attenuation factor beta of 0.65 A(-1) is determined, in line with the behavior of other systems containing oligo-p-phenylene spacers. Interestingly, for n=3, the presence/absence of hexyl substituents in the central p-phenylene ring causes a 10-fold difference in the rates between otherwise identical dyads. This comparison highlights the importance of the twist angle between adjacent spacers on the overall through-bond donor-acceptor coupling.

19.
Photochem Photobiol Sci ; 6(4): 438-43, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17404639

RESUMEN

The rod-like binuclear complexes [(ttpy)Ru(tpy-ph(2)-phbpy)Ru(ttpy)](4+) and [(ttpy)Ru(tpy-ph(2)-tpy)Ru(phtbpy)](4+) (for abbreviations, see text) have been synthesized and characterized. In both complexes, the polypyridine Ru(II) centers have (N--N--N)Ru(N--N--N) and (N--N--N)Ru(C--N--N) coordination environment. The two isomeric species differ in whether the cyclometalating carbon resides on the bridging or on the terminal ligand. The two complexes have virtually identical energy levels, but MLCT excited states of different (bridging or terminal) ligand localization. They are thus ideally suited to investigate possible effects of excited-state localization on intramolecular energy transfer kinetics. In fact, ultrafast spectroscopic measurements yield different energy transfer time constants for the two isomers, with the bridge-cyclometalated complex (2.7 ps) being faster than the terminal-cyclometalated one (8.0 ps). This difference can be explained in terms of different electronic factors for Dexter energy transfer. The study highlights the peculiar intricacies of intramolecular energy transfer in inorganic dyads involving MLCT excited states.

20.
Chemphyschem ; 7(7): 1514-9, 2006 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-16739160

RESUMEN

The molecular box 1 comprises of two zinc-porphyrin metallacycles connected by two free-base 4'-trans-dipyridylporphyrins, axially coordinated to the zinc centers. The photophysics of 1 were studied in chloroform by emission and ultrafast absorption spectroscopy. In the molecular box, fast singlet energy transfer (main component, tau=32 ps) is observed to occur from the zinc-porphyrin metallacycles to the free-base chromophores. From wavelength-dependent spectrofluorimetric data, the efficiency of the energy-transfer (ET) process is estimated as 0.5. The lower-than-unity value is tentatively attributed to the possibility of a competing electron-transfer quenching pathway. Molecular box 1 can be considered to be a simple, self-assembling, six-chromophore antenna system. It has an inner cavity, 11.4 Angstrom wide, that could be used, in principle, to host a variety of guest molecules and obtain higher-order assemblies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA