Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397048

RESUMEN

Negative Pressure Wound Therapy (NPWT) is a commonly employed clinical strategy for wound healing, yet its early-stage mechanisms remain poorly understood. To address this knowledge gap and overcome the limitations of human trials, we establish an NPWT C57BL/6JNarl mouse model to investigate the molecular mechanisms involved in NPWT. In this study, we investigate the intricate molecular mechanisms through which NPWT expedites wound healing. Our focus is on NPWT's modulation of inflammatory immune responses and the concurrent orchestration of multiple signal transduction pathways, resulting in shortened coagulation time and reduced inflammation. Notably, we observe a significant rise in dickkopf-related protein 1 (DKK-1) concentration during NPWT, promoting the differentiation of Hair Follicle Stem Cells (HFSCs) into epidermal cells, expediting wound closure. Under negative pressure, macrophages express and release DKK-1 cytokines, crucial for stimulating HFSC differentiation, as validated in animal experiments and in vitro studies. Our findings illuminate the inflammatory dynamics under NPWT, revealing potential signal transduction pathways. The proposed framework, involving early hemostasis, balanced inflammation, and macrophage-mediated DKK-1 induction, provides a novel perspective on enhancing wound healing during NPWT. Furthermore, these insights lay the groundwork for future pharmacological advancements in managing extensive wounds, opening avenues for targeted therapeutic interventions in wound care.


Asunto(s)
Terapia de Presión Negativa para Heridas , Humanos , Ratones , Animales , Terapia de Presión Negativa para Heridas/métodos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Cicatrización de Heridas , Inflamación/terapia
2.
Genome Biol ; 24(1): 177, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528411

RESUMEN

BACKGROUND: RNA profiling technologies at single-cell resolutions, including single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, scnRNA-seq for short), can help characterize the composition of tissues and reveal cells that influence key functions in both healthy and disease tissues. However, the use of these technologies is operationally challenging because of high costs and stringent sample-collection requirements. Computational deconvolution methods that infer the composition of bulk-profiled samples using scnRNA-seq-characterized cell types can broaden scnRNA-seq applications, but their effectiveness remains controversial. RESULTS: We produced the first systematic evaluation of deconvolution methods on datasets with either known or scnRNA-seq-estimated compositions. Our analyses revealed biases that are common to scnRNA-seq 10X Genomics assays and illustrated the importance of accurate and properly controlled data preprocessing and method selection and optimization. Moreover, our results suggested that concurrent RNA-seq and scnRNA-seq profiles can help improve the accuracy of both scnRNA-seq preprocessing and the deconvolution methods that employ them. Indeed, our proposed method, Single-cell RNA Quantity Informed Deconvolution (SQUID), which combines RNA-seq transformation and dampened weighted least-squares deconvolution approaches, consistently outperformed other methods in predicting the composition of cell mixtures and tissue samples. CONCLUSIONS: We showed that analysis of concurrent RNA-seq and scnRNA-seq profiles with SQUID can produce accurate cell-type abundance estimates and that this accuracy improvement was necessary for identifying outcomes-predictive cancer cell subclones in pediatric acute myeloid leukemia and neuroblastoma datasets. These results suggest that deconvolution accuracy improvements are vital to enabling its applications in the life sciences.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Niño , Humanos , RNA-Seq , Perfilación de la Expresión Génica/métodos , ARN Interferente Pequeño , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
3.
Bioinformatics ; 38(18): 4286-4292, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35876544

RESUMEN

MOTIVATION: Microbiota analyses have important implications for health and science. These analyses make use of 16S/18S rRNA gene sequencing to identify taxa and predict species diversity. However, most available tools for analyzing microbiota data require adept programming skills and in-depth statistical knowledge for proper implementation. While long-read amplicon sequencing can lead to more accurate taxa predictions and is quickly becoming more common, practitioners have no easily accessible tools with which to perform their analyses. RESULTS: We present MOCHI, a GUI tool for microbiota amplicon sequencing analysis. MOCHI preprocesses sequences, assigns taxonomy, identifies different abundant species and predicts species diversity and function. It takes either taxonomic count table or FASTQ of partial 16S/18S rRNA or full-length 16S rRNA gene as input. It performs analyses in real time and visualizes data in both tabular and graphical formats. AVAILABILITY AND IMPLEMENTATION: MOCHI can be installed to run locally or accessed as a web tool at https://mochi.life.nctu.edu.tw. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiota/genética , Filogenia
4.
Methods Mol Biol ; 2372: 263-295, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34417758

RESUMEN

Most of the transcribed human genome codes for noncoding RNAs (ncRNAs), and long noncoding RNAs (lncRNAs) make for the lion's share of the human ncRNA space. Despite growing interest in lncRNAs, because there are so many of them, and because of their tissue specialization and, often, lower abundance, their catalog remains incomplete and there are multiple ongoing efforts to improve it. Consequently, the number of human lncRNA genes may be lower than 10,000 or higher than 200,000. A key open challenge for lncRNA research, now that so many lncRNA species have been identified, is the characterization of lncRNA function and the interpretation of the roles of genetic and epigenetic alterations at their loci. After all, the most important human genes to catalog and study are those that contribute to important cellular functions-that affect development or cell differentiation and whose dysregulation may play a role in the genesis and progression of human diseases. Multiple efforts have used screens based on RNA-mediated interference (RNAi), antisense oligonucleotide (ASO), and CRISPR screens to identify the consequences of lncRNA dysregulation and predict lncRNA function in select contexts, but these approaches have unresolved scalability and accuracy challenges. Instead-as was the case for better-studied ncRNAs in the past-researchers often focus on characterizing lncRNA interactions and investigating their effects on genes and pathways with known functions. Here, we focus most of our review on computational methods to identify lncRNA interactions and to predict the effects of their alterations and dysregulation on human disease pathways.


Asunto(s)
ARN Largo no Codificante/genética , Genoma Humano , Humanos , ARN no Traducido
5.
Nat Biotechnol ; 39(11): 1453-1465, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34140680

RESUMEN

Existing compendia of non-coding RNA (ncRNA) are incomplete, in part because they are derived almost exclusively from small and polyadenylated RNAs. Here we present a more comprehensive atlas of the human transcriptome, which includes small and polyA RNA as well as total RNA from 300 human tissues and cell lines. We report thousands of previously uncharacterized RNAs, increasing the number of documented ncRNAs by approximately 8%. To infer functional regulation by known and newly characterized ncRNAs, we exploited pre-mRNA abundance estimates from total RNA sequencing, revealing 316 microRNAs and 3,310 long non-coding RNAs with multiple lines of evidence for roles in regulating protein-coding genes and pathways. Our study both refines and expands the current catalog of human ncRNAs and their regulatory interactions. All data, analyses and results are available for download and interrogation in the R2 web portal, serving as a basis for future exploration of RNA biology and function.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero , ARN no Traducido/genética , Transcriptoma/genética
7.
Med Phys ; 48(6): 3243-3261, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33837540

RESUMEN

PURPOSE: To show that intrinsic radiosensitivity varies greatly for protons and carbon (C) ions in addition to photons, and that DNA repair capacity remains important in governing this variability. METHODS: We measured or obtained from the literature clonogenic survival data for a number of human cancer cell lines exposed to photons, protons (9.9 keV/µm), and C-ions (13.3-77.1 keV/µm). We characterized their intrinsic radiosensitivity by the dose for 10% or 50% survival (D10% or D50% ), and quantified the variability at each radiation quality by the coefficient of variation (COV) in D10% and D50% . We also treated cells with DNA repair inhibitors prior to irradiation to assess how DNA repair capacity affects their variability. RESULTS: We found no statistically significant differences in the COVs of D10% or D50% between any of the radiation qualities investigated. The same was true regardless of whether the cells were treated with DNA repair inhibitors, or whether they were stratified into histologic subsets. Even within histologic subsets, we found remarkable differences in radiosensitivity for high LET C-ions that were often greater than the variations in RBE, with brain cancer cells varying in D10% (D50% ) up to 100% (131%) for 77.1 keV/µm C-ions, and non-small cell lung cancer and pancreatic cancer cell lines varying up to 55% (76%) and 51% (78%), respectively, for 60.5 keV/µm C-ions. The cell lines with modulated DNA repair capacity had greater variability in intrinsic radiosensitivity across all radiation qualities. CONCLUSIONS: Even for cell lines of the same histologic type, there are remarkable variations in intrinsic radiosensitivity, and these variations do not differ significantly between photon, proton or C-ion radiation. The importance of DNA repair capacity in governing the variability in intrinsic radiosensitivity is not significantly diminished for higher LET radiation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carbono , Línea Celular , Supervivencia Celular , Humanos , Protones , Tolerancia a Radiación , Efectividad Biológica Relativa
8.
Cancer ; 126(4): 800-807, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730714

RESUMEN

BACKGROUND: Racial disparities in cancer outcomes are increasingly recognized, but comprehensive analyses, including molecular studies, are limited. The objective of the current study was to perform a pan-cancer clinical and epigenetic molecular analysis of outcomes in African American (AA) and European American (EA) patients. METHODS: Cross-platform analyses using cancer databases (the Surveillance, Epidemiology, and End Results program database and the National Cancer Data Base) and a molecular database (The Cancer Genome Ancestry Atlas) were performed to evaluate clinical and epigenetic molecular differences between AA and EA patients based on genetic ancestry. RESULTS: In the primary pan-cancer survival analysis using the Surveillance, Epidemiology, and End Results database (2,045,839 patients; 87.5% EA and 12.5% AA), AA patients had higher mortality rates for 28 of 42 cancer types analyzed (hazard ratio, >1.0). AAs continued to have higher mortality in 13 cancer types after adjustment for socioeconomic variables using the National Cancer Database (5,150,023 patients; 11.6% AA and 88.4% EA). Then, molecular features of 5,283 tumors were analyzed in patients who had genetic ancestry data available (87.2% EA and 12.8% AA). Genes were identified with altered DNA methylation along with increased microRNA expression levels unique to AA patients that are associated with cancer drug resistance. Increased miRNAs (miR-15a, miR-17, miR-130-3p, miR-181a) were noted in common among AAs with breast, kidney, thyroid, or prostate carcinomas. CONCLUSIONS: The current results identified epigenetic features in AA patients who have cancer that may contribute to higher mortality rates compared with EA patients who have cancer. Therefore, a focus on molecular signatures unique to AAs may identify actionable molecular abnormalities.


Asunto(s)
Negro o Afroamericano/genética , Epigénesis Genética/genética , Disparidades en el Estado de Salud , MicroARNs/genética , Neoplasias/genética , Población Blanca/genética , Negro o Afroamericano/estadística & datos numéricos , Anciano , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Neoplasias/epidemiología , Neoplasias/etnología , Programa de VERF/estadística & datos numéricos , Análisis de Supervivencia , Estados Unidos/epidemiología , Población Blanca/estadística & datos numéricos
10.
Sci Rep ; 9(1): 5685, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952905

RESUMEN

Long intergenic non-coding RNAs (lincRNAs) are emerging as integral components of signaling pathways in various cancer types. In neuroblastoma, only a handful of lincRNAs are known as upstream regulators or downstream effectors of oncogenes. Here, we exploit RNA sequencing data of primary neuroblastoma tumors, neuroblast precursor cells, neuroblastoma cell lines and various cellular perturbation model systems to define the neuroblastoma lincRNome and map lincRNAs up- and downstream of neuroblastoma driver genes MYCN, ALK and PHOX2B. Each of these driver genes controls the expression of a particular subset of lincRNAs, several of which are associated with poor survival and are differentially expressed in neuroblastoma tumors compared to neuroblasts. By integrating RNA sequencing data from both primary tumor tissue and cancer cell lines, we demonstrate that several of these lincRNAs are expressed in stromal cells. Deconvolution of primary tumor gene expression data revealed a strong association between stromal cell composition and driver gene status, resulting in differential expression of these lincRNAs. We also explored lincRNAs that putatively act upstream of neuroblastoma driver genes, either as presumed modulators of driver gene activity, or as modulators of effectors regulating driver gene expression. This analysis revealed strong associations between the neuroblastoma lincRNAs MIAT and MEG3 and MYCN and PHOX2B activity or expression. Together, our results provide a comprehensive catalogue of the neuroblastoma lincRNome, highlighting lincRNAs up- and downstream of key neuroblastoma driver genes. This catalogue forms a solid basis for further functional validation of candidate neuroblastoma lincRNAs.


Asunto(s)
Neuroblastoma/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Tecnología de Genética Dirigida/métodos , Perfilación de la Expresión Génica/métodos , Humanos , Células-Madre Neurales/fisiología , Análisis de Secuencia de ARN/métodos , Transducción de Señal/genética , Factores de Transcripción/genética
11.
Mol Cell ; 71(2): 271-283.e5, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029005

RESUMEN

LIN28 is a bipartite RNA-binding protein that post-transcriptionally inhibits the biogenesis of let-7 microRNAs to regulate development and influence disease states. However, the mechanisms of let-7 suppression remain poorly understood because LIN28 recognition depends on coordinated targeting by both the zinc knuckle domain (ZKD), which binds a GGAG-like element in the precursor, and the cold shock domain (CSD), whose binding sites have not been systematically characterized. By leveraging single-nucleotide-resolution mapping of LIN28 binding sites in vivo, we determined that the CSD recognizes a (U)GAU motif. This motif partitions the let-7 microRNAs into two subclasses, precursors with both CSD and ZKD binding sites (CSD+) and precursors with ZKD but no CSD binding sites (CSD-). LIN28 in vivo recognition-and subsequent 3' uridylation and degradation-of CSD+ precursors is more efficient, leading to their stronger suppression in LIN28-activated cells and cancers. Thus, CSD binding sites amplify the regulatory effects of LIN28.


Asunto(s)
MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Células Madre Embrionarias , Células Hep G2 , Humanos , Células K562 , Ratones , MicroARNs/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Dominios Proteicos , Estructura Terciaria de Proteína , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/genética
12.
Nucleic Acids Res ; 46(9): 4354-4369, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29684207

RESUMEN

microRNAs (miRNAs) play key roles in cancer, but their propensity to couple their targets as competing endogenous RNAs (ceRNAs) has only recently emerged. Multiple models have studied ceRNA regulation, but these models did not account for the effects of co-regulation by miRNAs with many targets. We modeled ceRNA and simulated its effects using established parameters for miRNA/mRNA interaction kinetics while accounting for co-regulation by multiple miRNAs with many targets. Our simulations suggested that co-regulation by many miRNA species is more likely to produce physiologically relevant context-independent couplings. To test this, we studied the overlap of inferred ceRNA networks from four tumor contexts-our proposed pan-cancer ceRNA interactome (PCI). PCI was composed of interactions between genes that were co-regulated by nearly three-times as many miRNAs as other inferred ceRNA interactions. Evidence from expression-profiling datasets suggested that PCI interactions are predictive of gene expression in 12 independent tumor- and non-tumor contexts. Biochemical assays confirmed ceRNA couplings for two PCI subnetworks, including oncogenes CCND1, HIF1A and HMGA2, and tumor suppressors PTEN, RB1 and TP53. Our results suggest that PCI is enriched for context-independent interactions that are coupled by many miRNA species and are more likely to be context independent.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Neoplasias/genética , ARN Neoplásico/metabolismo , Humanos , Neoplasias/metabolismo
13.
Cancer Cell ; 33(4): 690-705.e9, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29622464

RESUMEN

We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories.


Asunto(s)
Neoplasias de la Mama/genética , Variaciones en el Número de Copia de ADN , Redes Reguladoras de Genes , Neoplasias de los Genitales Femeninos/genética , Mutación , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Especificidad de Órganos , Pronóstico , ARN Largo no Codificante/genética , Receptores de Estrógenos/genética
14.
Cell Rep ; 23(1): 194-212.e6, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617660

RESUMEN

This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smoking and/or human papillomavirus (HPV). SCCs harbor 3q, 5p, and other recurrent chromosomal copy-number alterations (CNAs), DNA mutations, and/or aberrant methylation of genes and microRNAs, which are correlated with the expression of multi-gene programs linked to squamous cell stemness, epithelial-to-mesenchymal differentiation, growth, genomic integrity, oxidative damage, death, and inflammation. Low-CNA SCCs tended to be HPV(+) and display hypermethylation with repression of TET1 demethylase and FANCF, previously linked to predisposition to SCC, or harbor mutations affecting CASP8, RAS-MAPK pathways, chromatin modifiers, and immunoregulatory molecules. We uncovered hypomethylation of the alternative promoter that drives expression of the ΔNp63 oncogene and embedded miR944. Co-expression of immune checkpoint, T-regulatory, and Myeloid suppressor cells signatures may explain reduced efficacy of immune therapy. These findings support possibilities for molecular classification and therapeutic approaches.


Asunto(s)
Carcinoma de Células Escamosas/clasificación , Regulación Neoplásica de la Expresión Génica , Redes y Vías Metabólicas , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Metilación de ADN , Transición Epitelial-Mesenquimal , Genómica/métodos , Humanos , Polimorfismo Genético
15.
Cell Rep ; 23(1): 297-312.e12, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617668

RESUMEN

Long noncoding RNAs (lncRNAs) are commonly dysregulated in tumors, but only a handful are known to play pathophysiological roles in cancer. We inferred lncRNAs that dysregulate cancer pathways, oncogenes, and tumor suppressors (cancer genes) by modeling their effects on the activity of transcription factors, RNA-binding proteins, and microRNAs in 5,185 TCGA tumors and 1,019 ENCODE assays. Our predictions included hundreds of candidate onco- and tumor-suppressor lncRNAs (cancer lncRNAs) whose somatic alterations account for the dysregulation of dozens of cancer genes and pathways in each of 14 tumor contexts. To demonstrate proof of concept, we showed that perturbations targeting OIP5-AS1 (an inferred tumor suppressor) and TUG1 and WT1-AS (inferred onco-lncRNAs) dysregulated cancer genes and altered proliferation of breast and gynecologic cancer cells. Our analysis indicates that, although most lncRNAs are dysregulated in a tumor-specific manner, some, including OIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergistically dysregulate cancer pathways in multiple tumor contexts.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , ARN Largo no Codificante/genética , Línea Celular , Línea Celular Tumoral , Redes Reguladoras de Genes , Genes Supresores de Tumor , Humanos , Oncogenes
16.
BMC Genomics ; 18(1): 418, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28558729

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) play multiple roles in tumor biology. Interestingly, reports from multiple groups suggest that miRNA targets may be coupled through competitive stoichiometric sequestration. Specifically, computational models predicted and experimental assays confirmed that miRNA activity is dependent on miRNA target abundance, and consequently, changes in the abundance of some miRNA targets lead to changes to the regulation and abundance of their other targets. The resulting indirect regulatory influence between miRNA targets resembles competition and has been dubbed competitive endogenous RNA (ceRNA). Recent studies have questioned the physiological relevance of ceRNA interactions, our ability to accurately predict these interactions, and the number of genes that are impacted by ceRNA interactions in specific cellular contexts. RESULTS: To address these concerns, we reverse engineered ceRNA networks (ceRNETs) in breast and prostate adenocarcinomas using context-specific TCGA profiles, and tested whether ceRNA interactions can predict the effects of RNAi-mediated gene silencing perturbations in PC3 and MCF7 cells._ENREF_22 Our results, based on tests of thousands of inferred ceRNA interactions that are predicted to alter hundreds of cancer genes in each of the two tumor contexts, confirmed statistically significant effects for half of the predicted targets. CONCLUSIONS: Our results suggest that the expression of a significant fraction of cancer genes may be regulated by ceRNA interactions in each of the two tumor contexts.


Asunto(s)
Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN , Bases de Datos Genéticas , Humanos , Células MCF-7 , MicroARNs/genética
17.
Genome Res ; 25(2): 257-67, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25378249

RESUMEN

We introduce a method for simultaneous prediction of microRNA-target interactions and their mediated competitive endogenous RNA (ceRNA) interactions. Using high-throughput validation assays in breast cancer cell lines, we show that our integrative approach significantly improves on microRNA-target prediction accuracy as assessed by both mRNA and protein level measurements. Our biochemical assays support nearly 500 microRNA-target interactions with evidence for regulation in breast cancer tumors. Moreover, these assays constitute the most extensive validation platform for computationally inferred networks of microRNA-target interactions in breast cancer tumors, providing a useful benchmark to ascertain future improvements.


Asunto(s)
Biología Computacional/métodos , Epistasis Genética , Redes Reguladoras de Genes , MicroARNs/genética , Interferencia de ARN , ARN Mensajero/genética , Regiones no Traducidas 3' , Algoritmos , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Análisis por Conglomerados , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/química , ARN Mensajero/química
18.
Cell ; 147(2): 370-81, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22000015

RESUMEN

By analyzing gene expression data in glioblastoma in combination with matched microRNA profiles, we have uncovered a posttranscriptional regulation layer of surprising magnitude, comprising more than 248,000 microRNA (miR)-mediated interactions. These include ∼7,000 genes whose transcripts act as miR "sponges" and 148 genes that act through alternative, nonsponge interactions. Biochemical analyses in cell lines confirmed that this network regulates established drivers of tumor initiation and subtype implementation, including PTEN, PDGFRA, RB1, VEGFA, STAT3, and RUNX1, suggesting that these interactions mediate crosstalk between canonical oncogenic pathways. siRNA silencing of 13 miR-mediated PTEN regulators, whose locus deletions are predictive of PTEN expression variability, was sufficient to downregulate PTEN in a 3'UTR-dependent manner and to increase tumor cell growth rates. Thus, miR-mediated interactions provide a mechanistic, experimentally validated rationale for the loss of PTEN expression in a large number of glioma samples with an intact PTEN locus.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , MicroARNs/metabolismo , Humanos , Análisis Multivariante , Oncogenes , Fosfohidrolasa PTEN/genética , Interferencia de ARN
19.
Proteins ; 72(2): 693-710, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18260102

RESUMEN

Prediction of protein subcellular localization (PSL) is important for genome annotation, protein function prediction, and drug discovery. Many computational approaches for PSL prediction based on protein sequences have been proposed in recent years for Gram-negative bacteria. We present PSLDoc, a method based on gapped-dipeptides and probabilistic latent semantic analysis (PLSA) to solve this problem. A protein is considered as a term string composed by gapped-dipeptides, which are defined as any two residues separated by one or more positions. The weighting scheme of gapped-dipeptides is calculated according to a position specific score matrix, which includes sequence evolutionary information. Then, PLSA is applied for feature reduction, and reduced vectors are input to five one-versus-rest support vector machine classifiers. The localization site with the highest probability is assigned as the final prediction. It has been reported that there is a strong correlation between sequence homology and subcellular localization (Nair and Rost, Protein Sci 2002;11:2836-2847; Yu et al., Proteins 2006;64:643-651). To properly evaluate the performance of PSLDoc, a target protein can be classified into low- or high-homology data sets. PSLDoc's overall accuracy of low- and high-homology data sets reaches 86.84% and 98.21%, respectively, and it compares favorably with that of CELLO II (Yu et al., Proteins 2006;64:643-651). In addition, we set a confidence threshold to achieve a high precision at specified levels of recall rates. When the confidence threshold is set at 0.7, PSLDoc achieves 97.89% in precision which is considerably better than that of PSORTb v.2.0 (Gardy et al., Bioinformatics 2005;21:617-623). Our approach demonstrates that the specific feature representation for proteins can be successfully applied to the prediction of protein subcellular localization and improves prediction accuracy. Besides, because of the generality of the representation, our method can be extended to eukaryotic proteomes in the future. The web server of PSLDoc is publicly available at http://bio-cluster.iis.sinica.edu.tw/~ bioapp/PSLDoc/.


Asunto(s)
Dipéptidos/metabolismo , Proteínas/metabolismo , Fracciones Subcelulares/metabolismo , Probabilidad , Proteínas/química
20.
J Proteome Res ; 7(2): 487-96, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18081245

RESUMEN

The prediction of transmembrane (TM) helix and topology provides important information about the structure and function of a membrane protein. Due to the experimental difficulties in obtaining a high-resolution model, computational methods are highly desirable. In this paper, we present a hierarchical classification method using support vector machines (SVMs) that integrates selected features by capturing the sequence-to-structure relationship and developing a new scoring function based on membrane protein folding. The proposed approach is evaluated on low- and high-resolution data sets with cross-validation, and the topology (sidedness) prediction accuracy reaches as high as 90%. Our method is also found to correctly predict both the location of TM helices and the topology for 69% of the low-resolution benchmark set. We also test our method for discrimination between soluble and membrane proteins and achieve very low overall false positive (0.5%) and false negative rates (0 to approximately 1.2%). Lastly, the analysis of the scoring function suggests that the topogeneses of single-spanning and multispanning TM proteins have different levels of complexity, and the consideration of interloop topogenic interactions for the latter is the key to achieving better predictions. This method can facilitate the annotation of membrane proteomes to extract useful structural and functional information. It is publicly available at http://bio-cluster.iis.sinica.edu.tw/~bioapp/SVMtop.


Asunto(s)
Biología Computacional , Proteínas de la Membrana/química , Proteínas de la Membrana/clasificación , Análisis de Secuencia de Proteína , Secuencia de Aminoácidos , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Valor Predictivo de las Pruebas , Estructura Secundaria de Proteína , Reproducibilidad de los Resultados , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA