Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Oral Maxillofac Surg ; 80(4): 775-783, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34968419

RESUMEN

PURPOSE: Reconstruction plates are frequently used to treat mandibular segmental defects. The aim of this study is to compare the biomechanical performance of a 3-dimensional-printed self-designed titanium alloy reconstruction plate with that of the traditional reconstruction plate in mandible reconstruction. The analyzed parameters of the self-designed reconstruction plate, including plate length (100 mm and 125 mm), plate thickness (2.1, 2.4, and 2.7 mm), and bone mass (100, 75, and 50%), were also evaluated. METHODS: An artificial mandible with anatomical geometry was used to develop the self-designed reconstructed plate. Both in vitro experiments and finite element simulations were performed for the biomechanical comparison of the self-designed and traditional reconstruction plates. In finite element analysis, 3 major muscle forces of mandible movement were set as the loading condition, and the displacement of the condyle was fixed in all directions as the boundary condition. RESULTS: The biomechanical performances (stresses in the plate and strains in bone) of the self-designed reconstruction plate were superior to those of the traditional plate. Factorial analysis indicated that plate length and thickness had significant effects on decreasing stresses of the plate and mandibular bone. CONCLUSIONS: The self-designed reconstruction plate might have a benefit to reduce the stresses/strains in plate itself and surrounding bone.


Asunto(s)
Mandíbula , Reconstrucción Mandibular , Fenómenos Biomecánicos , Placas Óseas , Análisis de Elementos Finitos , Humanos , Mandíbula/cirugía , Reconstrucción Mandibular/métodos , Impresión Tridimensional , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA