Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928387

RESUMEN

Cannabinoids and their receptors play a significant role in the regulation of gastrointestinal (GIT) peristalsis and intestinal barrier permeability. This review critically evaluates current knowledge about the mechanisms of action and biological effects of endocannabinoids and phytocannabinoids on GIT functions and the potential therapeutic applications of these compounds. The results of ex vivo and in vivo preclinical data indicate that cannabinoids can both inhibit and stimulate gut peristalsis, depending on various factors. Endocannabinoids affect peristalsis in a cannabinoid (CB) receptor-specific manner; however, there is also an important interaction between them and the transient receptor potential cation channel subfamily V member 1 (TRPV1) system. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) impact gut motility mainly through the CB1 receptor. They were also found to improve intestinal barrier integrity, mainly through CB1 receptor stimulation but also via protein kinase A (PKA), mitogen-associated protein kinase (MAPK), and adenylyl cyclase signaling pathways, as well as by influencing the expression of tight junction (TJ) proteins. The anti-inflammatory effects of cannabinoids in GIT disorders are postulated to occur by the lowering of inflammatory factors such as myeloperoxidase (MPO) activity and regulation of cytokine levels. In conclusion, there is a prospect of utilizing cannabinoids as components of therapy for GIT disorders.


Asunto(s)
Cannabinoides , Enfermedades Gastrointestinales , Motilidad Gastrointestinal , Permeabilidad , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Motilidad Gastrointestinal/efectos de los fármacos , Animales , Enfermedades Gastrointestinales/tratamiento farmacológico , Enfermedades Gastrointestinales/metabolismo , Permeabilidad/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Endocannabinoides/metabolismo
2.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38794127

RESUMEN

Phytosterols are a large group of substances belonging to sterols-compounds naturally occurring in the tissues of plants, animals, and humans. The most well-known animal sterol is cholesterol. Among phytosterols, the most significant compounds are ß-sitosterol, stigmasterol, and campesterol. At present, they are mainly employed in functional food products designed to counteract cardiovascular disorders by lowering levels of 'bad' cholesterol, which stands as their most extensively studied purpose. It is currently understood that phytosterols may also alleviate conditions associated with the gastrointestinal system. Their beneficial pharmacological properties in relation to gastrointestinal tract include anti-inflammatory and hepatoprotective activity. Also, the anti-cancer properties as well as the impact on the gut microbiome could be a very interesting area of research, which might potentially lead to the discovery of their new application. This article provides consolidated knowledge on a new potential use of phytosterols, namely the treatment or prevention of gastrointestinal diseases. The cited studies indicate high therapeutic efficacy in conditions such as peptic ulcer disease, IBD or liver failure caused by hepatotoxic xenobiotics, however, these are mainly in vitro or in vivo studies. Nevertheless, studies to date indicate their therapeutic potential as adjunctive treatments to conventional therapies, which often exhibit unsatisfactory efficacy or serious side effects. Unfortunately, at this point there is a lack of significant clinical study data to use phytosterols in clinical practice in this area.

3.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139112

RESUMEN

For centuries, various species from the genus Cirsium have been utilized in traditional medicine worldwide. A number of ethnopharmacological reports have pointed out that Cirsium plants can be applied to diminish digestive problems. Among them, Cirsium palustre (L.) Scop. (Asteraceae) stands out as a promising herbal drug candidate because its constituents exhibit antimicrobial and antioxidant potential, as evidenced by ethnopharmacological reports. As a result, the species is particularly intriguing as an adjunctive therapy for functional gastrointestinal and motility disorders. Our research goal was to verify how the extracts, fractions, and main flavonoids of C. palustre affect colon contractility under ex vivo conditions. An alternative model with porcine-isolated colon specimens was used to identify the effects of C. palustre preparations and their primary flavonoids. LC-ESI-MS was utilized to evaluate the impacts of methanol (CP1), methanolic 50% (CP2), and aqueous (CP3) extracts as well as diethyl ether (CP4), ethyl acetate (CP5), and n-butanol (CP6) fractions. Additionally, the impacts of four flavonoids, apigenin (API), luteolin (LUT), apigenin 7-O-glucuronide (A7GLC), and chrysoeriol (CHRY), on spontaneous and acetylcholine-induced motility were assessed under isometric conditions. The results showed that C. palustre extracts, fractions, and their flavonoids exhibit potent motility-regulating effects on colonic smooth muscle. The motility-regulating effect was observed on spontaneous and acetylcholine-induced contractility. All extracts and fractions exhibited an enhancement of the spontaneous contractility of colonic smooth muscle. For acetylcholine-induced activity, CP1, CP2, and CP4 caused a spasmolytic effect, and CP5 and CP6 had a spasmodic effect. LUT and CHRY showed a spasmolytic effect in the case of spontaneous and acetylcholine-induced activity. In contrast, API and A7GLC showed a contractile effect in the case of spontaneous and pharmacologically induced activity. Considering the results obtained from the study, C. palustre could potentially provide benefits in the treatment of functional gastrointestinal disorders characterized by hypomotility and hypermotility.


Asunto(s)
Cirsium , Flavonoides , Flavonoides/farmacología , Extractos Vegetales/farmacología , Apigenina , Acetilcolina , Parasimpatolíticos , Colon
4.
J Vet Res ; 67(2): 289-295, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38143819

RESUMEN

Introduction: Due to the growing interest in the use of cannabinoids in supportive therapies, they are increasingly used together with anti-inflammatory drugs. Cannabinoids inhibit gastrointestinal motility, while steroidal and nonsteroidal anti-inflammatory drugs influence motility in other ways. The aim of the research was to study the interactions between cannabidiol (CBD) and these two classes of anti-inflammatory drugs in the context of gastrointestinal motility. Dexamethasone (DEX) was selected as a steroidal drug and diclofenac (DCF) as a nonsteroidal counterpart. Material and Methods: The experiments were performed on isolated rat colon strips in isometric conditions. The contractile response to acetylcholine (ACh) (1 µM) was measured with no substance applied as a control value and was measured after application of CBD (80 µM), DEX (100 µM), DCF (100 µM), or a combination of these substances. Results: Cannabidiol strongly inhibited intestinal motility mediated by ACh application, DCF inhibited it non-significantly, while DEX intensified it. When CBD was co-administered with DEX, the combination inhibited intestinal motility non-significantly relative to the ACh-only control. Co-administration of CBD with DCF inhibited motility more than when these substances were administered separately. Conclusion: Inhibition of the intestinal response to ACh is likely due to the synergistic effect of CBD and endogenous cannabinoids. Dexamethasone lessened the inhibitory effect of CBD, likely because of diminished availability of the arachidonic acid necessary for endogenous cannabinoid synthesis. However, diclofenac may increase endogenous cannabinoid synthesis, because of the greater availability of arachidonic acid caused by DCF blocking the cyclooxygenation pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA