Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Anal Toxicol ; 40(6): 466-72, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27206645

RESUMEN

An accidental death associated with the use of the designer drug, 2-(4-chloro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine (25C-NBOMe), is reported. A 23-year-old Caucasian male experienced severe respiratory distress and died after being subdued by military law enforcement. At autopsy, remarkable findings upon internal examination included mild to moderate coronary atherosclerosis, biventricular dilation, mild right ventricular hypertrophy and bilateral pulmonary edema and congestion. The decedent's blood contained no drugs, ethanol or other volatile compounds. Pseudoephedrine, nicotine and cotinine were detected in his urine. A LC-QTOF designer drug screen, employing a basic solid-phase extraction, was used to isolate 25C-NBOMe, 25C-NBOH and 2C-C from both blood and urine specimens. Quantitative analysis was performed by LC-MS-MS operating in multiple reaction monitoring mode. 25C-NBOMe and 2C-C were present in the blood (2.07 and 0.12 ng/mL) and in the urine (27.43 ng/mL and 0.38 ng/mL), respectively. 25C-NBOMe concentrations were determined by standard addition in the brain (19.10 ng/g), spleen (27.13 ng/g), lung (25.21 ng/g), liver (15.20 ng/g), kidney (25.06 ng/g) and gastric contents (30.24 µg total in 100 mL submitted). On the basis of decedent case history, autopsy and toxicological findings, the medical examiner ruled the cause of death as 25C-NBOMe toxicity temporally associated with excited delirium and forcible restraint. The manner of death was ruled accidental.


Asunto(s)
Bencilaminas/sangre , Fenetilaminas/sangre , Psicotrópicos/sangre , Adulto , Cromatografía Liquida , Resultado Fatal , Toxicología Forense , Humanos , Masculino , Espectrometría de Masas en Tándem , Adulto Joven
2.
J Anal Toxicol ; 40(3): 173-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26792810

RESUMEN

Synthetic cannabinoids emerged on the designer drug market in recent years due to their ability to produce cannabis-like effects without the risk of detection by traditional drug testing techniques such as immunoassay and gas chromatography-mass spectrometry. As government agencies work to schedule existing synthetic cannabinoids, new, unregulated and structurally diverse compounds continue to be developed and sold. Synthetic cannabinoids undergo extensive metabolic conversion. Consequently, both blood and urine specimens may play an important role in the forensic analysis of synthetic cannabinoids. It has been observed that structurally similar synthetic cannabinoids follow common metabolic pathways, which often produce metabolites with similar metabolic transformations. Presented are two validated quantitative methods for extracting and identifying 15 parent synthetic cannabinoids in blood, 17 synthetic cannabinoid metabolites in urine and the qualitative identification of 2 additional parent compounds. The linear range for most synthetic cannabinoid compounds monitored was 0.1-10 ng/mL with the limit of detection between 0.01 and 0.5 ng/mL. Selectivity, specificity, accuracy, precision, recovery and matrix effect were also examined and determined to be acceptable for each compound. The validated methods were used to analyze a compilation of synthetic cannabinoid investigative cases where both blood and urine specimens were submitted. The study suggests a strong correlation between the metabolites detected in urine and the parent compounds found in blood.


Asunto(s)
Cannabinoides/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Drogas de Diseño/metabolismo , Humanos , Redes y Vías Metabólicas
3.
J Anal Toxicol ; 39(2): 144-51, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25492523

RESUMEN

The detection of new designer drugs is often a difficult issue in forensic urine drug testing as immunoassays are the primary screening methodology for drugs of abuse in many of these laboratories. Cross-reactivity of compounds with immunoassay kits can either aid or complicate the detection of a variety of drug and drug metabolites. For instance, emerging designer drugs that share structural similarities to amphetamines and phencyclidine (PCP) have the potential to cross-react with assays designed to detect these compounds. This study evaluates the cross-reactivity of five commercially available immunoassay reagent kits for 94 designer drugs on a Roche/Hitachi Modular P automated screening instrument. The compounds used in this study are grouped by structural class as follows: 2,5-dimethoxyamphetamines, 2C (2,5-dimethoxyphenethylamines), ß-keto amphetamines, substituted amphetamines, piperazines, α-pyrrolidinopropiophenones, tryptamines and PCP analogs. A drug concentration of 100 µg/mL was used to determine cross-reactivity for each assay and resulted in the following positive rates: Microgenics DRI(®) Ecstasy enzyme assay (19%), Microgenics DRI(®) Phencyclidine enzyme assay (20%), Lin-Zhi Methamphetamine enzyme immunoassay (39%), Siemens/Syva(®) EMIT(®)II Plus Amphetamines assay (43%) and CEDIA(®) DAU Amphetamine/Ecstasy assay (57%). Of the 94 designer drugs tested, 14% produced a negative response for all five kits. No designer drug used in this study generated a positive result for all five immunoassay kits.


Asunto(s)
Drogas de Diseño/análisis , Inmunoensayo/métodos , Juego de Reactivos para Diagnóstico , Reacciones Cruzadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA