Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Phys Med Biol ; 69(12)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38759675

RESUMEN

Objective.The objective of this work is to: (1) demonstrate fluorine-19 (19F) MRI on a 3T clinical system with a large field of view (FOV) multi-channel torso coil (2) demonstrate an example parameter selection optimization for a19F agent to maximize the signal-to-noise ratio (SNR)-efficiency for spoiled gradient echo (SPGR), balanced steady-state free precession (bSSFP), and phase-cycled bSSFP (bSSFP-C), and (3) validate detection feasibility inex vivotissues.Approach.Measurements were conducted on a 3.0T Discovery MR750w MRI (GE Healthcare, USA) with an 8-channel1H/19F torso coil (MRI Tools, Germany). Numerical simulations were conducted for perfluoropolyether to determine the theoretical parameters to maximize SNR-efficiency for the sequences. Theoretical parameters were experimentally verified, and the sensitivity of the sequences was compared with a 10 min acquisition time with a 3.125 × 3.125 × 3 mm3in-plane resolution. Feasibility of a bSSFP-C was also demonstrated in phantom andex vivotissues.Main Results. Flip angles (FAs) of 12 and 64° maximized the signal for SPGR and bSSFP, and validation of optimal FA and receiver bandwidth showed close agreement with numerical simulations. Sensitivities of 2.47, 5.81, and 4.44ms-0.5mM-1 and empirical detection limits of 20.3, 1.5, and 6.2 mM were achieved for SPGR, bSSFP, and bSSFP-C, respectively. bSSFP and bSSFP-C achieved 1.8-fold greater sensitivity over SPGR (p< 0.01).Significance.bSSFP-C was able to improve sensitivity relative to simple SPGR and reduce both bSSFP banding effects and imaging time. The sequence was used to demonstrate the feasibility of19F MRI at clinical FOVs and field strengths withinex-vivotissues.


Asunto(s)
Estudios de Factibilidad , Relación Señal-Ruido , Torso , Humanos , Torso/diagnóstico por imagen , Fantasmas de Imagen , Imagen por Resonancia Magnética con Fluor-19/instrumentación , Imagen por Resonancia Magnética con Fluor-19/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/instrumentación
2.
bioRxiv ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333207

RESUMEN

Background: Osteosarcoma (OS) patients that present with metastatic disease have a poor prognosis and no curative options. Allogeneic bone marrow transplant (alloBMT) is curative for hematologic malignancies through the graft-versus-tumor (GVT) effect, but to date has been ineffective for solid tumors like OS. CD155 is expressed on OS and interacts strongly with the inhibitory receptors TIGIT and CD96 but also binds to the activating receptor DNAM-1 on natural killer (NK) cells but has never been targeted after alloBMT. Combining adoptive transfer of allogeneic NK (alloNK) cells with CD155 checkpoint blockade after alloBMT may enhance a GVT effect against OS but could enhance toxicities like graft-versus-host-disease (GVHD). Methods: Ex vivo activated and expanded murine NK cells were generated with soluble IL-15/IL- 15Rα. AlloNK and syngeneic NK (synNK) cell phenotype, cytotoxicity, cytokine production, and degranulation against the CD155-expressing murine OS cell line K7M2 were assessed in vitro. Mice bearing pulmonary OS metastases underwent alloBMT followed by infusion of alloNK cells with combinations of anti-CD155 and anti-DNAM-1 blockade. Tumor growth, GVHD and survival were monitored and differential gene expression of lung tissue was assessed by RNA microarray. Results: AlloNK cells exhibited superior cytotoxicity against CD155-expressing OS compared to synNK cells, and this activity was further enhanced by CD155 blockade. CD155 blockade increased alloNK cell degranulation and interferon gamma production through DNAM-1, as these functions were abrogated during DNAM-1 blockade. In vivo, CD155 blockade after alloBMT increased EFS with no exacerbation of GVHD. Treatment with combination CD155 and DNAM-1 blockade ameliorated survival and tumor control benefits seen with CD155 blockade alone. In mice treated with CD155 blockade, genes related to NK cell cytotoxicity were upregulated. DNAM-1 blockade resulted in upregulation of NK cell inhibition. Conclusions: These results demonstrate the safety and efficacy of infusing alloNK cells with CD155 blockade to mount a GVT effect against OS and show benefits are in part through DNAM-1. Defining the hierarchy of receptors that govern alloNK responses will be critical to translating combination adoptive NK cell and immune checkpoint inhibition for patients with solid tumors treated with alloBMT. WHAT IS ALREADY KNOWN ON THIS TOPIC: Allogeneic bone marrow transplant (alloBMT) has yet to show efficacy in treating solid tumors, such as osteosarcoma (OS). CD155 is expressed on OS and interacts with natural killer (NK) cell receptors, such as activating receptor DNAM-1 and inhibitory receptors TIGIT and CD96 and has a dominant inhibitory effect on NK cell activity. Targeting CD155 interactions on allogeneic NK cells could enhance anti-OS responses, but this has not been tested after alloBMT. WHAT THIS STUDY ADDS: CD155 blockade enhances allogeneic natural killer cell-mediated cytotoxicity against osteosarcoma and improved event-free survival after alloBMT in an in vivo mouse model of metastatic pulmonary OS. Addition of DNAM-1 blockade abrogated CD155 blockade-enhanced allogeneic NK cell antitumor responses. HOW THIS STUDY MIGHT AFFECT RESEARCH PRACTICE OR POLICY: These results demonstrate efficacy of allogeneic NK cells combined with CD155 blockade to mount an antitumor response against CD155-expressing OS. Translation of combination adoptive NK cell and CD155 axis modulation offers a platform for alloBMT treatment approaches for pediatric patients with relapsed and refractory solid tumors.

3.
Front Immunol ; 12: 668307, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489927

RESUMEN

Management for high-risk neuroblastoma (NBL) has included autologous hematopoietic stem cell transplant (HSCT) and anti-GD2 immunotherapy, but survival remains around 50%. The aim of this study was to determine if allogeneic HSCT could serve as a platform for inducing a graft-versus-tumor (GVT) effect against NBL with combination immunocytokine and NK cells in a murine model. Lethally irradiated C57BL/6 (B6) x A/J recipients were transplanted with B6 bone marrow on Day +0. On day +10, allogeneic HSCT recipients were challenged with NXS2, a GD2+ NBL. On days +14-16, mice were treated with the anti-GD2 immunocytokine hu14.18-IL2. In select groups, hu14.18-IL2 was combined with infusions of B6 NK cells activated with IL-15/IL-15Rα and CD137L ex vivo. Allogeneic HSCT alone was insufficient to control NXS2 tumor growth, but the addition of hu14.18-IL2 controlled tumor growth and improved survival. Adoptive transfer of ex vivo CD137L/IL-15/IL-15Rα activated NK cells with or without hu14.18-IL2 exacerbated lethality. CD137L/IL-15/IL-15Rα activated NK cells showed enhanced cytotoxicity and produced high levels of TNF-α in vitro, but induced cytokine release syndrome (CRS) in vivo. Infusing Perforin-/- CD137L/IL-15/IL-15Rα activated NK cells had no impact on GVT, whereas TNF-α-/- CD137L/IL-15/IL-15Rα activated NK cells improved GVT by decreasing peripheral effector cell subsets while preserving tumor-infiltrating lymphocytes. Depletion of Ly49H+ NK cells also improved GVT. Using allogeneic HSCT for NBL is a viable platform for immunocytokines and ex vivo activated NK cell infusions, but must be balanced with induction of CRS. Regulation of TNFα or activating NK subsets may be needed to improve GVT effects.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Citocinas/farmacología , Gangliósidos/antagonistas & inhibidores , Efecto Injerto vs Tumor , Trasplante de Células Madre Hematopoyéticas , Inmunoterapia Adoptiva , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/trasplante , Activación de Linfocitos/efectos de los fármacos , Neuroblastoma/terapia , Animales , Línea Celular Tumoral , Terapia Combinada , Femenino , Gangliósidos/inmunología , Gangliósidos/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroblastoma/inmunología , Neuroblastoma/metabolismo , Neuroblastoma/patología
4.
Cancers (Basel) ; 13(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199783

RESUMEN

Treatment of metastatic pediatric solid tumors remain a significant challenge, particularly in relapsed and refractory settings. Standard treatment has included surgical resection, radiation, chemotherapy, and, in the case of neuroblastoma, immunotherapy. Despite such intensive therapy, cancer recurrence is common, and most tumors become refractory to prior therapy, leaving patients with few conventional treatment options. Natural killer (NK) cells are non-major histocompatibility complex (MHC)-restricted lymphocytes that boast several complex killing mechanisms but at an added advantage of not causing graft-versus-host disease, making use of allogeneic NK cells a potential therapeutic option. On top of their killing capacity, NK cells also produce several cytokines and growth factors that act as key regulators of the adaptive immune system, positioning themselves as ideal effector cells for stimulating heavily pretreated immune systems. Despite this promise, clinical efficacy of adoptive NK cell therapy to date has been inconsistent, prompting a detailed understanding of the biological pathways within NK cells that can be leveraged to develop "next generation" NK cell therapies. Here, we review advances in current approaches to optimizing the NK cell antitumor response including combination with other immunotherapies, cytokines, checkpoint inhibition, and engineering NK cells with chimeric antigen receptors (CARs) for the treatment of pediatric solid tumors.

5.
Leuk Lymphoma ; 62(5): 1167-1177, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33843403

RESUMEN

Targeting the JAK/STAT and BCL2 pathways in patients with relapsed/refractory T cell acute lymphoblastic leukemia (T-ALL) may provide an alternative approach to achieve clinical remissions. Ruxolitinib and venetoclax show a dose-dependent effect on T-ALL individually, but combination treatment reduces survival and proliferation of T-ALL in vitro. Using a xenograft model, the combination treatment fails to improve survival, with death from hind limb paralysis. Despite on-target inhibition by the drugs, histopathology demonstrates increased leukemic infiltration into the central nervous system (CNS) as compared to liver or bone marrow. Liquid chromatography-tandem mass spectroscopy shows that ruxolitinib and venetoclax insufficiently cross into the CNS. The addition of the CXCR4 inhibitor plerixafor with ruxolitinib and venetoclax reduces clinical scores and enhances survival. While combination therapy with ruxolitinib and venetoclax shows promise for treating T-ALL, additional inhibition of the CXCR4-CXCL12 axis may be needed to maximize the possibility of complete remission.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores CXCR4 , Bencilaminas , Compuestos Bicíclicos Heterocíclicos con Puentes , Sistema Nervioso Central , Ciclamas , Movilización de Célula Madre Hematopoyética , Humanos , Janus Quinasa 1 , Nitrilos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Pirazoles , Pirimidinas , Sulfonamidas
6.
J Clin Invest ; 130(6): 2816-2819, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32391808

RESUMEN

Programmed cell death protein 1 (PD-1) has become one of the most investigated targets for cancer immunotherapy. Most research has centered on inhibiting PD-1 on T cells, but there is increased interest in understanding the role of PD-1 on NK cells. While the expression of PD-1 on NK cells has been controversial, with papers publishing contradictory results in multiple models, there is increased clinical interest in NK and PD-1 immunotherapy. In this issue of the JCI, Judge et al. comprehensively explore the lack of PD-1 expression on murine, canine, and human NK cells and the clinical implication of these findings.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Animales , Perros , Humanos , Inmunoterapia , Células Asesinas Naturales , Ratones , Receptor de Muerte Celular Programada 1/genética , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA