Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Anat Cell Biol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164249

RESUMEN

Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression in vivo. A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)-the latter being a byproduct of PRP preparation and used as a reference standard-resulting in the groups designated as 'operated group (OP)+PRP' and 'OP+PPP', respectively. PRP or PPP (500 µl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the 'OP+PRP' group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in 'OP+PRP'. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in 'OP+PPP' and further in 'OP+PRP'. These results highlight PRP's protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.

2.
Curr Issues Mol Biol ; 43(1): 365-383, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203617

RESUMEN

Although the individual consumption of medicinal mushrooms, including Phellinus linteus (PL), Ganoderma lucidum (GL), and Inonotus obliquus (IO), is known to be neuroprotective, the associated mechanisms underlying their therapeutic synergism on focal cerebral ischemia (fCI) have yet to be elucidated. This study aimed to demonstrate the neuroprotective effects of mixed mushroom mycelia (MMM) against experimental fCI. The water-fractions, ethanolic-fractions, and ethyl acetate-fractions of the MMM (PL, GL, and IO) grown in a barley medium using solid-state fermentation techniques were prepared and their protective effects against glutamate-induced excitotoxicity were compared in PC-12 cells. After the identification of the water extracts of MMM (wMMM) as the most suitable form, which possessed the lowest toxicity and highest efficacy, further analyses for evaluating the anti-apoptotic effects of wMMM, including Hoechst 33258-based nuclear staining, fluorescence-activated cell sorting, and reactive oxygen species (ROS) detection assays, were performed. Rats were subjected to a 90 min middle cerebral artery occlusion and reperfusion, after which a wMMM treatment resulted in significant dose-dependent improvements across a number of parameters. Furthermore, measurements of intracellular ROS and levels of antioxidant enzymes revealed a wMMM-mediated ROS attenuation and antioxidant enzyme upregulation. We suggest that wMMM is neuroprotective against fCI through its anti-apoptotic and anti-oxidative effects.


Asunto(s)
Agaricales/química , Isquemia Encefálica/prevención & control , Hordeum/química , Micelio/química , Fármacos Neuroprotectores/farmacología , Agua/química , Agaricales/crecimiento & desarrollo , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Isquemia Encefálica/metabolismo , Medios de Cultivo/farmacología , Masculino , Actividad Motora/efectos de los fármacos , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Fármacos Neuroprotectores/química , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA