Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Front Oncol ; 11: 712348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422665

RESUMEN

ARTEMIN (ARTN), one of the glial-cell derived neurotrophic factor family of ligands, has been reported to be associated with a number of human malignancies. In this study, the enhanced expression of ARTN in colorectal carcinoma (CRC) was observed; the expression of ARTN positively correlated with lymph node metastases and advanced tumor stages and predicted poor prognosis. Forced expression of ARTN in CRC cells enhanced oncogenic behavior, mesenchymal phenotype, stem cell-like properties and tumor growth and metastasis in a xenograft model. These functions were conversely inhibited by depletion of endogenous ARTN. Forced expression of ARTN reduced the sensitivity of CRC cells to 5-FU treatment; and 5-FU resistant CRC cells harbored enhanced expression of ARTN. The oncogenic functions of ARTN were demonstrated to be mediated by p44/42 MAP kinase dependent expression of CDH2 (CADHERIN 2, also known as N-CADHERIN). Inhibition of p44/42 MAP kinase activity or siRNA mediated depletion of endogenous CDH2 reduced the enhanced oncogenicity and chemoresistance consequent to forced expression of ARTN induced cell functions; and forced expression of CDH2 rescued the reduced mesenchymal properties and resistance to 5-FU after ARTN depletion. In conclusion, ARTN may be of prognostic and theranostic utility in CRC.

2.
Front Oncol ; 11: 626659, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898307

RESUMEN

Epstein-Barr virus (EBV)-the prototypical human tumor virus-is responsible for 1-2% of the global cancer burden, but divergent strains seem to exist in different geographical regions with distinct predilections for causing lymphoid or epithelial malignancies. Here we report the establishment and characterization of Yu103, an Asia Pacific EBV strain with a highly remarkable provenance of being derived from nasopharyngeal carcinoma biopsy but subsequently propagated in human B-lymphoma cells and xenograft models. Unlike previously characterized EBV strains which are either predominantly B-lymphotropic or epitheliotropic, Yu103 evinces an uncanny capacity to infect and transform both B-lymphocytes and nasopharyngeal epithelial cells. Genomic and phylogenetic analyses indicated that Yu103 EBV lies midway along the spectrum of EBV strains known to drive lymphomagenesis or carcinogenesis, and harbors molecular features which likely account for its unusual properties. To our knowledge, Yu103 EBV is currently the only EBV isolate shown to drive human nasopharyngeal carcinoma and B-lymphoma, and should therefore provide a powerful novel platform for research on EBV-driven hematological and epithelial malignancies.

3.
ACS Pharmacol Transl Sci ; 3(6): 1083-1099, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33344891

RESUMEN

Platinum-based chemotherapy has been the standard treatment for ovarian cancer patients for approximately four decades. However, the prognosis of patients with advanced ovarian carcinoma remains dismal, mainly attributed to both dose-limiting toxicities of cisplatin and the high rate of chemo-resistant disease recurrence. Herein, both patient-derived and experimentally generated cisplatin-sensitive and -resistant ovarian cancer cell line models were used to delineate BADSer99 phosphorylation as an actionable target in ovarian cancer. BADSer99 phosphorylation was negatively associated with cisplatin sensitivity in ovarian cancer, and the inhibition of BADSer99 phosphorylation by point mutation induced apoptosis and reduced cisplatin IC50. In addition, BAD phosphorylation was also shown to be associated with cancer stem cell-like properties. Henceforth, a novel small molecule which inhibits BAD phosphorylation specifically at Ser99 (NPB) was utilized. NPB promoted apoptosis and reduced 3D growth of bulk cancer cells and inhibited cancer stem cell-like properties in both cisplatin-sensitive and -resistant ovarian cancer cells. The combination of cisplatin with NPB exhibited synergistic effects in vitro. NPB in combination with cisplatin also achieved an improved outcome compared to either monotreatment in vivo, including suppression of the cancer stem cell population, an effect not observed with cisplatin treatment. Furthermore, NPB exhibited strong synergistic effects with the AKT inhibitor AZD5363, and significantly reduced its IC50 in cells resistant to cisplatin treatment. These findings identify BADSer99 phosphorylation as an actionable and pharmacologically relevant target to improve outcomes of cisplatin treated ovarian cancer.

4.
Pharmacol Res ; 156: 104686, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32068118

RESUMEN

Cell cycle dysregulation, characterised by aberrant activation of cyclin dependent kinases (CDKs), is a hallmark of cancer. After years of research on the first and second generations of less selective CDK inhibitors with unfavourable clinical activity and toxicity profiles, CDK4/6 inhibitors become the first and only class of highly specific CDK inhibitors being approved for cancer treatment to date. CDK4/6 inhibitors have transformed the treatment paradigm of estrogen receptor-positive (ER+) breast cancer, dramatically improving the survival outcomes of these patients when incorporated with conventional endocrine therapies in both the first and later-line settings. Currently, the efficacies of CDK4/6 inhibitors in other breast cancer subtypes and cancers are being actively explored. All three CDK4/6 inhibitors have demonstrated very similar clinical efficacies. However, being the least similar structurally, abemaciclib is the only CDK4/6 inhibitor with single agent activity in refractory metastatic ER + breast cancer, the ability to cross the blood brain barrier efficiently, and a distinct toxicity profile of lower myelosuppression such that it can be dosed continuously. Here, we further discuss the distinguishing features of abemaciclib as compared to the other two CDK4/6 inhibitors, palbociclib and ribociclib. Besides being the most potent inhibitor of CDK4/6, abemaciclib exhibits a wider selectivity towards other CDKs and kinases, and functions through additional mechanisms of action besides inducing G1 cell cycle arrest, in a dose dependent manner. Hence, abemaciclib has the potential to act independently of the CDK4/6-cyclin D-RB pathway, resulting in crucial implications on the possibly expanded clinical indications and predictive biomarkers of abemaciclib, in contrast to the other CDK4/6 inhibitors. The current status of preclinical evidence and clinical studies of abemaciclib as a single agent and in combination treatment in breast and other cancers, together with its potential predictive biomarkers, is also summarised in this review.


Asunto(s)
Aminopiridinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bencimidazoles/uso terapéutico , Proliferación Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Aminopiridinas/efectos adversos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bencimidazoles/efectos adversos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/enzimología , Neoplasias/patología , Inhibidores de Proteínas Quinasas/efectos adversos , Transducción de Señal , Resultado del Tratamiento
5.
Int J Mol Sci ; 20(24)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835445

RESUMEN

Increased expression of trefoil factor 3 (TFF3) has been reported in colorectal carcinoma (CRC), being correlated with distant metastasis and poor clinical outcomes. Amongst the CRC subtypes, mesenchymal (CMS4) CRC is associated with the worst survival outcome. Herein, the functional roles of TFF3 and the pharmacological inhibition of TFF3 by a novel specific small molecule TFF3 inhibitor-2-amino-4-(4-(6-fluoro-5-methylpyridin-3-yl)phenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile (AMPC) in CMS4 CRC was explored. Forced expression of TFF3 in CMS4 CRC cells promoted cell proliferation, cell survival, foci formation, invasion, migration, cancer stem cell like behaviour and growth in 3D Matrigel. In contrast, siRNA-mediated depletion of TFF3 or AMPC inhibition of TFF3 in CMS4 CRC cells decreased oncogenic behaviour as indicated by the above cell function assays. AMPC also inhibited tumour growth in vivo. The TFF3-stimulated oncogenic behaviour of CMS4 CRC cells was dependent on TFF3 activation of the p44/42 MAPK (ERK1/2) pathway. Furthermore, the forced expression of TFF3 decreased the sensitivity of CMS4 CRC cells to 5-fluorouracil (5-FU); while depleted TFF3 expression enhanced 5-FU sensitivity in CMS4 CRC cells. 5-FU treatment induced TFF3 expression in CMS4 CRC cells. AMPC, when used in combination with 5-FU in CMS4 CRC cells exhibited a synergistic inhibitory effect. In summary, this study provides functional evidence for TFF3 as a therapeutic target in CMS4 CRC.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas de Neoplasias , Nitrilos/farmacología , Factor Trefoil-3/antagonistas & inhibidores , Animales , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Factor Trefoil-3/metabolismo
6.
Oncogenesis ; 8(11): 65, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685806

RESUMEN

TFF3 has been identified as a novel biomarker to distinguish between lung adenocarcinoma (ADC) and lung squamous-cell carcinoma (SCC). Herein, we determined the oncogenic functions of TFF3 and demonstrated the potential of pharmacological inhibition of TFF3 in lung ADC using a novel small-molecule inhibitor of TFF3 dimerization (AMPC). Forced expression of TFF3 in lung ADC cells enhanced cell proliferation and survival, increased anchorage-independent growth, cancer stem cell behavior, growth in 3D Matrigel, and cell migration and invasion. In contrast, depleted expression of TFF3 suppressed these cellular functions. Mechanistically, TFF3 exerted its oncogenic function through upregulation of ARAF and hence enhanced downstream activation of MEK1/2 and ERK1/2. Pharmacological inhibition of TFF3 by AMPC, resulted in markedly decreased cell survival, proliferation, 3D growth and foci formation, and impaired tumor growth in a xenograft mouse model. Moreover, the combination of various MEK1/2 inhibitors with AMPC exhibited synergistic inhibitory effects on lung ADC cell growth. In conclusion, this study provides the first evidence that TFF3 is a potent promoter of lung ADC progression. Targeting TFF3 with a novel small-molecule inhibitor alone or in combination with conventional MEK1/2 inhibitors are potential strategies to improve the outcome of lung ADC.

7.
Cancers (Basel) ; 11(10)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658702

RESUMEN

Dose-dependent toxicity and acquired resistance are two major challenges limiting the efficacious treatment of mammary carcinoma (MC) with doxorubicin. Herein, we investigated the function of Trefoil Factor 3 (TFF3) in the sensitivity and acquired resistance of estrogen receptor positive (ER+) MC cells to doxorubicin. Doxorubicin treatment of ER+MC cells increased TFF3 expression. The depletion of TFF3 by siRNA or inhibition with a small molecule TFF3 inhibitor (AMPC) synergistically enhanced the efficacy of doxorubicin in ER+MC through the suppression of doxorubicin-induced AKT activation and enhancement of doxorubicin-induced apoptosis. Elevated expression of TFF3 and increased activation of AKT were also observed using a model of acquired doxorubicin resistance in ER+MC cells. AMPC partially re-sensitized the doxorubicin resistant cells to doxorubicin-induced apoptosis. Indeed, doxorubicin resistant ER + MC cells exhibited increased sensitivity to AMPC as a single agent compared to doxorubicin sensitive cells. In vivo, AMPC attenuated growth of doxorubicin sensitive ER+MC xenografts whereas it produced regression of xenografts generated by doxorubicin resistant ER+MC cells. Hence, TFF3 inhibition may improve the efficacy and reduce required doses of doxorubicin in ER+MC. Moreover, inhibition of TFF3 may also be an effective therapeutic strategy to eradicate doxorubicin resistant ER+MC.

8.
Cancer Manag Res ; 11: 5983-6001, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31308741

RESUMEN

Purpose: Evidence indicates that long noncoding RNAs (lncRNA) possess important roles in various cellular processes and that dysregulation of lncRNAs promotes tumor progression. However, the expression patterns and biological functions of many specific lncRNAs in breast cancer remain to be determined. Methods: Quantitative real-time polymerase chain reaction was performed to detect Linc00460, miR-489-5p and FGF7 expression. Protein levels were determined using Western blot. MTT and colony formation assay were used to measure cell proliferation. Transwell assays were conducted to determine cell migration and invasion. Luciferase reporter assays were carried out to assess the interaction between miR-489-5p and Linc00460 or FGF7. Biotin pull-down assay was used to detect the direct interaction between miR-489-5p and Linc00460. In vivo experiments were performed to measure tumor formation and lung metastasis. Results: We demonstrated that lncRNA Linc00460 was upregulated in breast cancer, and its expression level was positively associated with lymphatic metastasis and poor overall survival. Forced expression of Linc00460 increased, whereas Linc00460 silencing decreased, breast cancer cell viability, migration and invasion both in vitro and in vivo. Linc00460 was identified as a direct target of miR-489-5p, which further targeted FGF7 and exerted oncogenic functions in breast cancer. Mechanistically, Linc00460 served as a competing endogenous RNA of FGF-7 mRNA by sponging miR-489-5p, resulting in upregulated FGF7 expression and AKT activity. Notably, forced expression of miR-489-5p abrogated Linc00460-mediated oncogenic behavior and activation of the FGF7-AKT pathway in breast cancer cells. Conclusion: We have demonstrated that Linc00460 promotes breast cancer progression partly through the miR-489-5p/FGF7/AKT axis.

9.
Carcinogenesis ; 39(12): 1506-1516, 2018 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-30084985

RESUMEN

The dysregulation of micro RNAs (miRNAs) is a crucial characteristic of human cancers. Herein, we observed frequent amplification of the MIR191/425 locus in breast cancer, which is correlated with poor survival outcome. We demonstrated that the miR-191/425 cluster binds the 3' untranslated region of the DICER1 transcript and posttranscriptionally represses DICER1 expression, thereby impairing global miRNAs biogenesis. Functionally, the forced expression of miR-191 or miR-425 stimulated the proliferation, survival, migration and invasion of breast cancer cells, whereas the inhibition of miR-191 or miR-425 suppressed these oncogenic behaviors of breast cancer cells, in a manner dependent on miR-191/425-mediated downregulation of DICER1. Furthermore, the miR-191/425 cluster promoted breast tumor growth, invasion and metastasis in vivo. The let-7 family of miRNAs was downregulated upon forced expression of miR-191 or miR-425, with a corresponding increase in the levels of let-7 target, high-mobility group AT-hook 2 (HMGA2). The forced expression of let-7 partially abrogated the miR-191/425-mediated oncogenic effects in breast cancer cells, suggestive of let-7 as a downstream effector of the miR-191/425-DICER1 axis. Collectively, we proposed that the inhibition of global miRNA processing, through miR-191/425-mediated downregulation of DICER1, promotes breast cancer progression.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/genética , ARN Helicasas DEAD-box/genética , MicroARNs/genética , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Ribonucleasa III/genética , Regiones no Traducidas 3'/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oncogenes/genética
10.
Cancer Res ; 78(17): 4915-4928, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29945962

RESUMEN

The dysregulation of miRNAs has been increasingly recognized as a critical mediator of cancer development and progression. Here, we show that frequent deletion of the MIR135A1 locus is associated with poor prognosis in primary breast cancer. Forced expression of miR-135a decreased breast cancer progression, while inhibition of miR-135a with a specific miRNA sponge elicited opposing effects, suggestive of a tumor suppressive role of miR-135a in breast cancer. Estrogen receptor alpha (ERα) bound the promoter of MIR135A1 for its transcriptional activation, whereas tamoxifen treatment inhibited expression of miR-135a in ERα+ breast cancer cells. miR-135a directly targeted ESR1, ESRRA, and NCOA1, forming a negative feedback loop to inhibit ERα signaling. This regulatory feedback between miR-135a and ERα demonstrated that miR-135a regulated the response to tamoxifen. The tamoxifen-mediated decrease in miR-135a expression increased the expression of miR-135a targets to reduce tamoxifen sensitivity. Consistently, miR-135a expression was downregulated in ERα+ breast cancer cells with acquired tamoxifen resistance, while forced expression of miR-135a partially resensitized these cells to tamoxifen. Tamoxifen resistance mediated by the loss of miR-135a was shown to be partially dependent on the activation of the ERK1/2 and AKT pathways by miR-135a-targeted genes. Taken together, these results indicate that deletion of the MIR135A1 locus and decreased miR-135a expression promote ERα+ breast cancer progression and tamoxifen resistance.Significance: Loss of miR-135a in breast cancer disrupts an estrogen receptor-induced negative feedback loop, perpetuating disease progression and resistance to therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/17/4915/F1.large.jpg Cancer Res; 78(17); 4915-28. ©2018 AACR.


Asunto(s)
Antineoplásicos Hormonales/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , MicroARNs/genética , Tamoxifeno/administración & dosificación , Adulto , Anciano , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estimación de Kaplan-Meier , Células MCF-7 , Ratones , Persona de Mediana Edad , Coactivador 1 de Receptor Nuclear/genética , Receptores de Estrógenos/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Receptor Relacionado con Estrógeno ERRalfa
11.
Oncotarget ; 8(61): 103900-103918, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29262609

RESUMEN

Tumor derived human growth hormone (hGH) has been implicated in cancer development and progression. However, the specific functional role of autocrine/paracrine hGH in colorectal cancer (CRC) remains largely to be determined. Herein, we demonstrated a crucial oncogenic role of autocrine hGH in CRC progression. Elevated hGH expression was detected in CRC compared to normal colorectal tissue, and hGH expression in CRC was positively associated with tumor size and lymph node metastasis. Forced expression of hGH stimulated cell proliferation, survival, oncogenicity and epithelial to mesenchymal transition (EMT) of CRC cells, and promoted xenograft growth and local invasion in vivo. Autocrine hGH expression in CRC cells stimulated the activation of the ERK1/2 pathway, which in turn resulted in increased transcription of the mesenchymal marker FIBRONECTIN 1 and transcriptional repression of the epithelial marker E-CADHERIN. The autocrine hGH-stimulated increase in CRC cell proliferation, cell survival and EMT was abrogated upon ERK1/2 inhibition. Furthermore, autocrine hGH-stimulated CRC cell migration and invasion was dependent on the ERK1/2-mediated increase in FIBRONECTIN 1 expression and decrease in E-CADHERIN expression. Forced expression of hGH also enhanced CSC-like behavior of CRC cells, as characterized by increased colonosphere formation, ALDH-positive population and CSC marker expression. Autocrine hGH-enhanced cancer stem cell (CSC)-like behavior in CRC cells was also observed to be E-CADHERIN-dependent. Thus, autocrine hGH plays a critical role in CRC progression, and inhibition of hGH could be a promising targeted therapeutic approach to limit disease progression in metastatic CRC patients.

12.
Oncotarget ; 8(43): 74188-74208, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-29088778

RESUMEN

HER2+/ER+ breast cancer, a subset of the luminal B subtype, makes up approximately 10% of all breast cancers. The bidirectional crosstalk between HER2 and estrogen receptor (ER) in HER2+/ER+ breast cancer contributes to resistance towards both anti-estrogens and HER2-targeted therapies. TFF3 promotes breast cancer progression and has been implicated in anti-estrogen resistance in breast cancer. Herein, we investigated the cross-regulation between HER2 and estrogen-responsive TFF3, and the role of TFF3 in mediating trastuzumab resistance in HER2+/ER+ breast cancer. TFF3 expression was decreased by HER2 activation, and increased by inhibition of HER2 with trastuzumab in HER2+/ER+ breast cancer cells, partially in an ERα-independent manner. In contrast, the forced expression of TFF3 activated the entire HER family of receptor tyrosine kinases (HER1-4). Hence, HER2 negatively regulates its own signalling through the transcriptional repression of TFF3, while trastuzumab inhibition of HER2 results in increased TFF3 expression to compensate for the loss of HER2 signalling. In HER2+/ER+ breast cancer cells with acquired trastuzumab resistance, TFF3 expression was markedly upregulated and associated with a corresponding decrease in HER signalling. siRNA mediated depletion or small molecule inhibition of TFF3 decreased the survival and growth advantage of the trastuzumab resistant cells without re-sensitization to trastuzumab. Furthermore, TFF3 inhibition abrogated the enhanced cancer stem cell-like behaviour in trastuzumab resistant HER2+/ER+ breast cancer cells. Collectively, TFF3 may function as a potential biomarker and therapeutic target in trastuzumab resistant HER2+/ER+ breast cancer.

13.
Oncotarget ; 8(44): 77268-77291, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-29100386

RESUMEN

Tamoxifen (TAM) is widely used as an adjuvant therapy for women with breast cancer (BC). However, TAM possesses partial oestrogenic activity in the uterus and its use has been associated with an increased incidence of endometrial carcinoma (EC). The molecular mechanism for these observations is not well understood. Herein, we demonstrated that forced expression of Trefoil factor 3 (TFF3), in oestrogen receptor-positive (ER+) EC cells significantly increased cell cycle progression, cell survival, anchorage-independent growth, invasiveness and tumour growth in xenograft models. Clinically, elevated TFF3 protein expression was observed in EC compared with normal endometrial tissue, and its increased expression in EC was significantly associated with myometrial invasion. TAM exposure increased expression of TFF3 in ER+ EC cells and its elevated expression resulted in increased oncogenicity and invasiveness. TAM-stimulated expression of TFF3 in EC cells was associated with hypomethylation of the TFF3 promoter sequence and c-JUN/SP1-dependent transcriptional activation. In addition, small interfering (si) RNA-mediated depletion or polyclonal antibody inhibition of TFF3 significantly abrogated oncogenicity and invasiveness in EC cells consequent to TAM induction or forced expression of TFF3. Hence, TAM-stimulated upregulation of TFF3 in EC cells was critical in promoting EC progression associated with TAM treatment. Importantly, inhibition of TFF3 function might be an attractive molecular modality to abrogate the stimulatory effects of TAM on endometrial tissue and to limit the progression of EC.

14.
Int J Mol Sci ; 18(6)2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28617312

RESUMEN

Despite progress in diagnosis and treatment of hepatocellular carcinoma (HCC), the clinical outcome is still unsatisfactory. Increased expression of human growth hormone (hGH) in HCC has been reported and is associated with poor survival outcome in HCC patients. Herein, we investigated the mechanism of the oncogenic effects of hGH in HCC cell lines. In vitro functional assays demonstrated that forced expression of hGH in these HCC cell lines promoted cell proliferation, cell survival, anchorage-independent growth, cell migration, and invasion, as previously reported. In addition, forced expression of hGH promoted cancer stem cell (CSC)-like properties of HCC cells. The increased invasive and CSC-like properties of HCC cells with forced expression of hGH were mediated by inhibition of the expression of the tight junction component CLAUDIN-1. Consistently, depletion of CLAUDIN-1 expression increased the invasive and CSC-like properties of HCC cell lines. Moreover, forced expression of CLAUDIN-1 abrogated the acquired invasive and CSC-like properties of HCC cell lines with forced expression of hGH. We further demonstrated that forced expression of hGH inhibited CLAUDIN-1 expression in HCC cell lines via signal transducer and activator of transcription 3 (STAT3) mediated inhibition of CLAUDIN-1 transcription. Hence, we have elucidated a novel hGH-STAT3-CLAUDIN-1 axis responsible for invasive and CSC-like properties in HCC. Inhibition of hGH should be considered as a therapeutic option to hinder progression and relapse of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Claudina-1/genética , Regulación Neoplásica de la Expresión Génica , Hormona de Crecimiento Humana/metabolismo , Neoplasias Hepáticas/genética , Factor de Transcripción STAT3/metabolismo , Apoptosis , Comunicación Autocrina , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Células Hep G2 , Hormona de Crecimiento Humana/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
15.
J Biol Chem ; 292(33): 13551-13564, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28637868

RESUMEN

Tamoxifen-resistant (TAMR) estrogen receptor-positive (ER+) breast cancer is characterized by elevated Erb-B2 receptor tyrosine kinase 2 (ERBB2) expression. However, the underlying mechanisms responsible for the increased ERBB2 expression in the TAMR cells remain poorly understood. Herein, we reported that the ERBB2 expression is regulated at the post-transcriptional level by miR26a/b and the RNA-binding protein human antigen R (HuR), both of which associate with the 3'-UTR of the ERBB2 transcripts. We demonstrated that miR26a/b inhibits the translation of ERBB2 mRNA, whereas HuR enhances the stability of the ERBB2 mRNA. In TAMR ER+ breast cancer cells with elevated ERBB2 expression, we observed a decrease in the level of miR26a/b and an increase in the level of HuR. The forced expression of miR26a/b or the depletion of HuR decreased ERBB2 expression in the TAMR cells, resulting in the reversal of tamoxifen resistance. In contrast, the inactivation of miR26a/b or forced expression of HuR decreased tamoxifen responsiveness of the parental ER+ breast cancer cells. We further showed that the increase in HuR expression in the TAMR ER+ breast cancer cells is attributable to an increase in the HuR mRNA isoform with shortened 3'-UTR, which exhibits increased translational activity. This shortening of the HuR mRNA 3'-UTR via alternative polyadenylation (APA) was observed to be dependent on cleavage stimulation factor subunit 2 (CSTF2/CstF-64), which is up-regulated in the TAMR breast cancer cells. Taken together, we have characterized a model in which the interplay between miR26a/b and HuR post-transcriptionally up-regulates ERBB2 expression in TAMR ER+ breast cancer cells.


Asunto(s)
Regiones no Traducidas 3'/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Proteína 1 Similar a ELAV/metabolismo , MicroARNs/metabolismo , Receptor ErbB-2/metabolismo , Tamoxifeno/farmacología , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Factor de Estimulación del Desdoblamiento , Femenino , Humanos , MicroARNs/antagonistas & inhibidores , Mutación , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Poliadenilación/efectos de los fármacos , Interferencia de ARN , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/agonistas , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Neoplásico/agonistas , ARN Neoplásico/antagonistas & inhibidores , ARN Neoplásico/química , ARN Neoplásico/metabolismo , Proteínas de Unión al ARN/agonistas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptor ErbB-2/agonistas , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/genética , Elementos de Respuesta/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
16.
Oncotarget ; 8(24): 39323-39344, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28445151

RESUMEN

The efficacious treatment of hepatocellular carcinoma (HCC) remains a challenge, partially being attributed to intrinsic chemoresistance. Previous reports have observed increased TFF3 expression in HCC. Herein, we investigated the functional role of TFF3 in progression of HCC, and in both intrinsic and acquired chemoresistance. TFF3 expression was observed to be upregulated in HCC and associated with poor clinicopathological features and worse patient survival outcome. Functionally, forced expression of TFF3 in HCC cell lines increased cell proliferation, cell survival, anchorage-independent and 3D matrigel growth, cell invasion and migration, and in vivo tumor growth. In contrast, depleted expression of TFF3 decreased the oncogenicity of HCC cells as indicated by the above parameters. Furthermore, forced expression of TFF3 decreased doxorubicin sensitivity of HCC cells, which was attributed to increased doxorubicin efflux and cancer stem cell-like behavior of Hep3B cells. In contrast, depletion of TFF3 increased doxorubicin sensitivity and decreased cancer stem cell-like behavior of Hep3B cells. Correspondingly, TFF3 expression was markedly increased in Hep3B cells with acquired doxorubicin resistance, while the depletion of TFF3 resulted in re-sensitization of the Hep3B cells to doxorubicin. The increased doxorubicin efflux and enhanced cancer stem cell-like behavior of the doxorubicin-resistant Hep3B cells was observed to be dependent on TFF3 expression. In addition, we determined that TFF3-stimulated oncogenicity and chemoresistance in HCC cells was mediated by AKT-dependent expression of BCL-2. Hence, therapeutic inhibition of TFF3 should be considered to hinder HCC progression and overcome intrinsic and acquired chemoresistance in HCC.


Asunto(s)
Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/patología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factor Trefoil-3/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Endocrinology ; 158(6): 1595-1611, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28204229

RESUMEN

Advanced and recurrent endometrial carcinoma (EC) exhibits a poor response to chemotherapy and low survival rates. It has been previously reported that human prolactin (hPRL) is upregulated in endometrial cancer and is associated with worse survival outcomes. We provide evidence for the functional role of hPRL in EC progression. We generated a model for the study of autocrine hPRL-mediated cell functional effects through the forced expression of hPRL in human EC cells. Autocrine hPRL expression stimulated cell proliferation, anchorage-independent growth, migration, and invasion of EC cells and promoted tumor growth, local invasion, and metastatic colonization in xenograft models. In addition, forced expression of hPRL decreased sensitivity of EC cells to chemotherapeutic drugs (i.e., doxorubicin and paclitaxel), both in vitro and in vivo. Consistently, small interfering RNA-mediated depletion of hPRL significantly reduced oncogenicity and enhanced the chemosensitivity of EC cells. As CD24 is hPRL-regulated and has been implicated in drug resistance in EC, we further showed that CD24 is a critical mediator of hPRL-stimulated reduced sensitivity to doxorubicin and paclitaxel in EC cells. Therefore, inhibition of hPRL signaling is a potential therapeutic strategy for the treatment of late-stage EC, which can be used in combination with chemotherapy to improve the chemotherapeutic response.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Endometrioide/patología , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Endometriales/patología , Prolactina/farmacología , Animales , Comunicación Autocrina/efectos de los fármacos , Carcinoma Endometrioide/metabolismo , Doxorrubicina/farmacología , Interacciones Farmacológicas , Neoplasias Endometriales/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Paclitaxel/farmacología , Prolactina/metabolismo , Células Tumorales Cultivadas
18.
Sci Rep ; 4: 3827, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24451979

RESUMEN

Glutaminase is a metabolic enzyme responsible for glutaminolysis, a process harnessed by cancer cells to feed their accelerated growth and proliferation. Among the glutaminase isoforms, human kidney-type glutaminase (KGA) is often upregulated in cancer and is thus touted as an attractive drug target. Here we report the active site inhibition mechanism of KGA through the crystal structure of the catalytic domain of KGA (cKGA) in complex with 6-diazo-5-oxo-L-norleucine (DON), a substrate analogue of glutamine. DON covalently binds with the active site Ser286 and interacts with residues such as Tyr249, Asn335, Glu381, Asn388, Tyr414, Tyr466 and Val484. The nucleophilic attack of Ser286 sidechain on DON releases the diazo group (N2) from the inhibitor and results in the formation of an enzyme-inhibitor complex. Mutational studies confirmed the key role of these residues in the activity of KGA. This study will be important in the development of KGA active site inhibitors for therapeutic interventions.


Asunto(s)
Diazooxonorleucina/metabolismo , Glutaminasa/química , Glutaminasa/metabolismo , Glutamina/metabolismo , Riñón/enzimología , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Glutaminasa/genética , Humanos , Cinética , Modelos Moleculares , Mutación/genética , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
19.
Virus Res ; 176(1-2): 37-44, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23669218

RESUMEN

Singapore grouper iridovirus (SGIV) is a major viral pathogen that can cause substantial economic losses in aquaculture, but its genome replication, organization and package are largely unknown. We isolated SGIV protein-DNA core by freeze-thaw lysis of viral particles and gradient centrifugation. Twelve proteins were identified from the core by mass spectrometry. ORF008L, one of the core proteins, was identified as a collagen-like protein and its DNA binding ability was demonstrated by electrophoretic mobility shift assay (EMSA). Binding of ORF008L to DNA was neither sequence specific nor pH dependent, and it protected DNA from degradation by DNase I in vitro. These results suggest that ORF008L may play a role in protection or stabilization of the viral genome during infection.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Ranavirus/fisiología , Proteínas Virales/metabolismo , Animales , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Unión Proteica , Ranavirus/genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA