Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Med ; 24(8): 1143-1150, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30038220

RESUMEN

Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy.


Asunto(s)
Retrovirus Endógenos/metabolismo , Inmunidad Innata/efectos de los fármacos , Interferones/farmacología , Neoplasias/inmunología , Neoplasias/virología , Animales , Línea Celular Tumoral , Retrovirus Endógenos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , Neoplasias/genética , ARN sin Sentido/genética
3.
Clin Cancer Res ; 17(9): 2830-41, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21415220

RESUMEN

PURPOSE: Small cell lung cancer (SCLC) is a highly malignant disease with poor prognosis, necessitating the need to develop new and efficient treatment modalities. PRIMA-1(Met) (p53-dependent reactivation of massive apoptosis), also known as APR-246, is a small molecule, which restores tumor suppressor function to mutant p53 and induces cancer cell death in various cancer types. Since p53 is mutated in more than 90% of SCLC, we investigated the ability of PRIMA-1(Met) to induce apoptosis and inhibit tumor growth in SCLC with different p53 mutations. EXPERIMENTAL DESIGN: The therapeutic effect of PRIMA-1(Met)/APR-246 was studied in SCLC cells in vitro using cell viability assay, fluorescence-activated cell-sorting analysis, p53 knockdown studies, and Western blot analyses. The antitumor potential of PRIMA-1(Met)/APR-246 was further evaluated in two different SCLC xenograft models. RESULTS: PRIMA-1(Met)/APR-246 efficiently inhibited the growth of the SCLC cell lines expressing mutant p53 in vitro and induced apoptosis, associated with increased fraction of cells with fragmented DNA, caspase-3 activation, PARP cleavage, Bax and Noxa upregulation and Bcl-2 downregulation in the cells. The growth suppressive effect of PRIMA-1(Met)/APR-246 was markedly reduced in SCLC cell lines transfected with p53 siRNA, supporting the role of mutant p53 in PRIMA-1(Met)/APR-246-induced cell death. Moreover, in vivo studies showed significant antitumor effects of PRIMA-1(Met) after i.v. injection in SCLC mouse models with no apparent toxicity. CONCLUSION: This study is the first to show the potential use of p53-reactivating molecules such as PRIMA-1(Met)/APR-246 for the treatment of SCLC.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Quinuclidinas/farmacología , Quinuclidinas/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Progresión de la Enfermedad , Genes p53 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Desnudos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Factores de Tiempo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Results Pharma Sci ; 1(1): 49-56, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-25755981

RESUMEN

The systemic delivery of gene therapeutics by non-viral methods has proven difficult. Transfection systems that are performing well in vitro have been reported to have disadvantageous properties such as rapid clearance and short circulation time often resulting in poor transfection efficiency when applied in vivo. Large unilaminary vesicles (LUV) with encapsulated nucleic acids designated stabilized-plasmid-lipo-particle (SPLP) have showed promising results in terms of systemic stability and accumulation in tumor tissue due to the enhanced permeability and retention effect (EPR). We have developed a simple protocol for the research-scale preparation of SPLPs from commercially available reagents with high amounts of encapsulated plasmid DNA. The SPLPs show properties of promising accumulation in tumor tissue in comparison to other organs when intravenously injected into xenograft tumor-bearing nude mice. Although transcriptionally targeted suicide gene therapy was not achieved, the SPLPs were capable of mediating reporter gene transfection in subcutaneous flank tumors originating from human small cell lung cancer.

5.
Int J Nanomedicine ; 5: 371-83, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20957159

RESUMEN

BACKGROUND: DOTAP/cholesterol-based lipoplexes are successfully used for delivery of plasmid DNA in vivo especially to the lungs, although low systemic stability and circulation have been reported. To achieve the aim of discovering the best method for systemic delivery of DNA to disseminated tumors we evaluated the potential of formulating DOTAP/cholesterol lipoplexes with a polyethylene glycol (PEG)-modified lipid, giving the benefit of the shielding and stabilizing properties of PEG in the bloodstream. METHOD: A direct comparison of properties in vitro and in vivo of 4 different DOTAP/cholesterol-based lipoplexes containing 0%, 2%, 4%, and 10% PEG was performed using reporter gene activity and radioactive tracer lipid markers to monitor biodistribution. RESULTS: We found that 10% PEGylation of lipoplexes caused reduced retention in lung and heart tissues of nude mice compared to nonPEGylated lipoplexes, however no significant delivery to xenograft flank tumors was observed. Although PEGylated and nonPEGylated lipoplexes were delivered to cells the ability to mediate successful transfection is hampered upon PEGylation, presumably due to a changed uptake mechanism and intracellular processing. CONCLUSION: The eminent in vivo transfection potency of DOTAP/cholesterol-based lipoplexes is well established for expression in lung tumors, but it is unsuitable for expression in non first pass organs such as xenograft flank tumors in mice even after addition of a PEG-lipid in the formulation.


Asunto(s)
Colesterol , Ácidos Grasos Monoinsaturados , Polietilenglicoles , Compuestos de Amonio Cuaternario , Transfección , Animales , Carcinoma de Células Pequeñas/genética , Carcinoma de Células Pequeñas/terapia , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Expresión Génica , Genes Reporteros , Terapia Genética , Humanos , Técnicas In Vitro , Liposomas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Masculino , Ratones , Ratones Desnudos , Nanomedicina , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA