Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Am Chem Soc ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820242

RESUMEN

Arsenic is highly toxic and a significant threat to human health, but certain bacteria have developed defense mechanisms initiated by AsIII binding to AsIII-sensing proteins of the ArsR family. The transcriptional regulator AfArsR responds to AsIII and SbIII by coordinating the metalloids with three cysteines, located in a short sequence of the same monomer chain. Here, we characterize the binding of AsIII and HgII to a model peptide encompassing this fragment of the protein via solution equilibrium and spectroscopic/spectrometric techniques (pH potentiometry, UV, CD, NMR, PAC, EXAFS, and ESI-MS) combined with DFT calculations and MD simulations. Coordination of AsIII changes the peptide structure from a random-coil to a well-defined structure of the complex. A trigonal pyramidal AsS3 binding site is formed with almost exactly the same structure as observed in the crystal structure of the native protein, implying that the peptide possesses all of the features required to mimic the AsIII recognition and response selectivity of AfArsR. Contrary to this, binding of HgII to the peptide does not lead to a well-defined structure of the peptide, and the atoms near the metal binding site are displaced and reoriented in the HgII model. Our model study suggests that structural organization of the metal site by the inducer ion is a key element in the mechanism of the metalloid-selective recognition of this protein.

2.
PLoS One ; 19(5): e0293786, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718010

RESUMEN

α-zeins are amphiphilic maize seed storage proteins with material properties suitable for a multitude of applications e.g., in renewable plastics, foods, therapeutics and additive manufacturing (3D-printing). To exploit their full potential, molecular-level insights are essential. The difficulties in experimental atomic-resolution characterization of α-zeins have resulted in a diversity of published molecular models. However, deep-learning α-zein models are largely unexplored. Therefore, this work studies an AlphaFold2 (AF2) model of a highly expressed α-zein using molecular dynamics (MD) simulations. The sequence of the α-zein cZ19C2 gave a loosely packed AF2 model with 7 α-helical segments connected by turns/loops. Compact tertiary structure was limited to a C-terminal bundle of three α-helices, each showing notable agreement with a published consensus sequence. Aiming to chart possible α-zein conformations in practically relevant solvents, rather than the native solid-state, the AF2 model was subjected to MD simulations in water/ethanol mixtures with varying ethanol concentrations. Despite giving structurally diverse endpoints, the simulations showed several patterns: In water and low ethanol concentrations, the model rapidly formed compact globular structures, largely preserving the C-terminal bundle. At ≥ 50 mol% ethanol, extended conformations prevailed, consistent with previous SAXS studies. Tertiary structure was partially stabilized in water and low ethanol concentrations, but was disrupted in ≥ 50 mol% ethanol. Aggregated results indicated minor increases in helicity with ethanol concentration. ß-sheet content was consistently low (∼1%) across all conditions. Beyond structural dynamics, the rapid formation of branched α-zein aggregates in aqueous environments was highlighted. Furthermore, aqueous simulations revealed favorable interactions between the protein and the crosslinking agent glycidyl methacrylate (GMA). The proximity of GMA epoxide carbons and side chain hydroxyl oxygens simultaneously suggested accessible reactive sites in compact α-zein conformations and pre-reaction geometries for methacrylation. The findings may assist in expanding the applications of these technologically significant proteins, e.g., by guiding chemical modifications.


Asunto(s)
Conformación Proteica , Zea mays , Zeína , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Agua/química , Zea mays/química , Zea mays/metabolismo , Zeína/química
3.
Bioconjug Chem ; 34(3): 518-528, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36756787

RESUMEN

Chemical modification of peptides and proteins, such as PEGylation and lipidation, creates conjugates with new properties. However, they are typically not dynamic or stimuli-responsive. Self-assembly controlled by a stimulus will allow adjusting properties directly. Here, we report that conjugates of oligogalacturonic acids (OGAs), isolated from plant-derived pectin, are Ca2+-responsive. We report the conjugation of OGA to human insulin (HI) to create new glyco-insulins. In addition, we coupled OGA to model peptides. We studied their self-assembly by dynamic light scattering, small-angle X-ray scattering, and circular dichroism, which showed that the self-assembly to form nanostructures depended on the length of the OGA sequence and Zn2+ and Ca2+ concentrations. Subcutaneous administration of OGA12-HI with Zn2+ showed a stable decrease in blood glucose over a longer period of time compared to HI, despite the lower receptor binding affinity.


Asunto(s)
Insulina , Péptidos , Humanos , Glucemia , Dicroismo Circular , Insulina/química , Péptidos/química , Calcio/metabolismo
4.
Chembiochem ; 23(16): e202200290, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35714117

RESUMEN

The transcriptional regulator CueR is activated by the binding of CuI , AgI , or AuI to two cysteinates in a near-linear fashion. The C-terminal CCHHRAG sequence in Escherichia coli CueR present potential additional metal binding ligands and here we explore the effect of deleting this fragment on the binding of AgI to CueR. CD spectroscopic and ESI-MS data indicate that the high AgI -binding affinity of WT-CueR is significantly reduced in Δ7C-CueR.[111 Ag PAC spectroscopy demonstrates that the WT-CueR metal site structure (AgS2 ) is conserved, but less populated in the truncated variant. Thus, the function of the C-terminal fragment may be to stabilize the two-coordinate metal site for cognate monovalent metal ions. In a broader perspective this is an example of residues beyond the second coordination sphere affecting metal site physicochemical properties while leaving the structure unperturbed.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Escherichia coli , Transactivadores , Sitios de Unión , Cobre/química , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Oro/química , Metales/metabolismo , Plata/química , Transactivadores/metabolismo
5.
Bioinformatics ; 38(15): 3749-3758, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35731214

RESUMEN

MOTIVATION: The identification of predictive biomarker signatures from omics and multi-omics data for clinical applications is an active area of research. Recent developments in assay technologies and machine learning (ML) methods have led to significant improvements in predictive performance. However, most high-performing ML methods suffer from complex architectures and lack interpretability. RESULTS: We present the application of a novel symbolic-regression-based algorithm, the QLattice, on a selection of clinical omics datasets. This approach generates parsimonious high-performing models that can both predict disease outcomes and reveal putative disease mechanisms, demonstrating the importance of selecting maximally relevant and minimally redundant features in omics-based machine-learning applications. The simplicity and high-predictive power of these biomarker signatures make them attractive tools for high-stakes applications in areas such as primary care, clinical decision-making and patient stratification. AVAILABILITY AND IMPLEMENTATION: The QLattice is available as part of a python package (feyn), which is available at the Python Package Index (https://pypi.org/project/feyn/) and can be installed via pip. The documentation provides guides, tutorials and the API reference (https://docs.abzu.ai/). All code and data used to generate the models and plots discussed in this work can be found in https://github.com/abzu-ai/QLattice-clinical-omics. SUPPLEMENTARY INFORMATION: Supplementary material is available at Bioinformatics online.


Asunto(s)
Investigación Biomédica , Programas Informáticos , Humanos , Algoritmos , Biomarcadores , Documentación
6.
Nat Commun ; 13(1): 76, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013247

RESUMEN

Chiral communications exist in secondary structures of foldamers and copolymers via a network of noncovalent interactions within effective intermolecular force (IMF) range. It is not known whether long-range chiral communication exists between macromolecular tertiary structures such as peptide coiled-coils beyond the IMF distance. Harnessing the high sensitivity of single-molecule force spectroscopy, we investigate the chiral interaction between covalently linked DNA duplexes and peptide coiled-coils by evaluating the binding of a diastereomeric pair of three DNA-peptide conjugates. We find that right-handed DNA triple helices well accommodate peptide triple coiled-coils of the same handedness, but not with the left-handed coiled-coil stereoisomers. This chiral communication is effective in a range (<4.5 nm) far beyond canonical IMF distance. Small-angle X-ray scattering and molecular dynamics simulation indicate that the interdomain linkers are tightly packed via hydrophobic interactions, which likely sustains the chirality transmission between DNA and peptide domains. Our findings establish that long-range chiral transmission occurs in tertiary macromolecular domains, explaining the presence of homochiral pairing of superhelices in proteins.


Asunto(s)
ADN/química , Sustancias Macromoleculares/química , Simulación del Acoplamiento Molecular , Dominios Proteicos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estructura Molecular , Péptidos/química , Estructura Secundaria de Proteína , Proteínas/química , Estereoisomerismo
7.
Nanoscale ; 13(18): 8467-8473, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33984105

RESUMEN

Metal ion-induced self-assembly (SA) of proteins into higher-order structures can provide new, dynamic nano-assemblies. Here, the synthesis and characterization of a human insulin (HI) analog modified at LysB29 with the tridentate chelator 2,2':6',2''-terpyridine (Tpy) is described. SA of this new insulin analog (LysB29Tpy-HI) in the presence of the metal ions Fe2+ and Eu3+ at different concentrations was studied in solution by fluorescence luminescence and CD spectroscopy, dynamic light scattering, and small-angle X-ray scattering, while surface assembly was probed by AFM. Unique oligomerization was observed in solution, as Fe2+ yielded small magenta-colored discrete non-native assemblies, while Eu3+ caused the formation of large fractal assemblies. Binding of both metal ions to Tpy was demonstrated spectroscopically, and emission lifetime experiments revealed a distinct Eu3+ coordination geometry that included two water molecules. SAXS suggested that LysB29Tpy-HI with Fe2+ oligomerized to a discrete, roughly octameric species, while LysB29Tpy-HI with Eu3+ gave very large assemblies that could be modelled as fractals. The fractal dimensionality increased with the Eu3+ concentration. We propose that this is a consequence of Eu3+ binding to both Tpy and to free carboxylic acid groups on the insulin surface. LysB29Tpy-HI maintained insulin receptor affinity, and showed extended blood glucose lowering and plasma concentration after subcutaneous injection in rats. The combination of metal ion directed SA and native SA provides control of nano-scale fractal dimensionality and points towards use in therapeutics.


Asunto(s)
Fractales , Insulina , Animales , Ratas , Dispersión del Ángulo Pequeño , Análisis Espectral , Difracción de Rayos X
8.
Chemistry ; 27(4): 1416-1422, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33073896

RESUMEN

Attachment of cationic moieties to oligonucleotides (ONs) promises not only to increase the binding affinity of antisense ONs by reducing charge repulsion between the two negatively charged strands of a duplex, but also to augment their in vivo stability against nucleases. In this study, polyamine functionality was introduced into ONs by means of 2'-amino-LNA scaffolds. The resulting ONs exhibited efficient binding towards ssDNA, ssRNA and dsDNA targets, and the 2'-amino-LNA analogue carrying a triaminated linker showed the most pronounced duplex- and triplex-stabilizing effect. Molecular modelling revealed that favourable conformational and electrostatic effects led to salt-bridge formation between positively charged polyamine moieties and the Watson-Hoogsteen groove of the dsDNA targets, resulting in the observed triplex stabilization. All the investigated monomers showed increased resistance against 3'-nucleolytic digestion relative to the non-functionalized controls.


Asunto(s)
Oligonucleótidos , Poliaminas , ADN/química , ADN de Cadena Simple/química , Oligonucleótidos/química
9.
Angew Chem Int Ed Engl ; 59(37): 16091-16097, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32516466

RESUMEN

Fluorescent, DNA-stabilized silver nanoclusters (DNA-AgNCs) are applied in a range of applications within nanoscience and nanotechnology. However, their diverse optical properties, mechanism of formation, and aspects of their composition remain unexplored, making the rational design of nanocluster probes challenging. Herein, a synthetic procedure is described for obtaining a high yield of emissive DNA-AgNCs with a C-loop hairpin DNA sequence, with subsequent purification by size-exclusion chromatography (SEC). Through a combination of optical spectroscopy, gel electrophoresis, inductively coupled plasma mass spectrometry (ICP-MS), and small-angle X-ray scattering (SAXS) in conjunction with the systematic study of various DNA sequences, the low-resolution structure and mechanism of the formation of AgNCs were investigated. Data indicate that fluorescent DNA-AgNCs self-assemble by a head-to-head binding of two DNA hairpins, bridged by a silver nanocluster, resulting in the modelling of a dimeric structure harboring an Ag12 cluster.


Asunto(s)
Biopolímeros/química , ADN/química , Nanopartículas del Metal/química , Plata/química , Sitios de Unión , Dicroismo Circular , Dimerización , Secuencias Invertidas Repetidas , Conformación de Ácido Nucleico , Espectrofotometría Ultravioleta
10.
Chemistry ; 26(25): 5676-5684, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32022377

RESUMEN

DNA nanostructures have been designed and used in many different applications. However, the use of nucleic acid scaffolds to promote the self-assembly of artificial protein mimics is only starting to emerge. Herein five coiled-coil peptide structures were templated by the hybridization of a d-DNA triplex or its mirror-image counterpart, an l-DNA triplex. The self-assembly of the desired trimeric structures in solution was confirmed by gel electrophoresis and small-angle X-ray scattering, and the stabilizing synergy between the two domains was found to be chirality-independent but orientation-dependent. This is the first example of using a nucleic acid scaffold of l-DNA to template the formation of artificial protein mimics. The results may advance the emerging POC-based nanotechnology field by adding two extra dimensions, that is, chirality and polarity, to provide innovative molecular tools for rational design and bottom-up construction of artificial protein mimics, programmable materials and responsive nanodevices.


Asunto(s)
ADN/química , Nanotecnología/métodos , Modelos Moleculares , Nanoestructuras/química , Nanotecnología/instrumentación , Hibridación de Ácido Nucleico , Péptidos/química , Dominios Proteicos
11.
Chemistry ; 26(33): 7451-7457, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32045037

RESUMEN

Selectivity for monovalent metal ions is an important facet of the function of the metalloregulatory protein CueR. 111 Ag perturbed angular correlation of γ-rays (PAC) spectroscopy probes the metal site structure and the relaxation accompanying the instantaneous change from AgI to CdII upon 111 Ag radioactive decay. That is, a change from AgI , which activates transcription, to CdII , which does not. In the frozen state (-196 °C) two nuclear quadrupole interactions (NQIs) are observed; one (NQI1 ) agrees well with two coordinating thiolates and an additional longer contact to the S77 backbone carbonyl, and the other (NQI2 ) reflects that CdII has attracted additional ligand(s). At 1 °C only NQI2 is observed, demonstrating that relaxation to this structure occurs within ≈10 ns of the decay of 111 Ag. Thus, transformation from AgI to CdII rapidly disrupts the functional linear bis(thiolato)AgI metal site structure. This inherent metal site flexibility may be central to CueR function, leading to remodelling into a non-functional structure upon binding of non-cognate metal ions. In a broader perspective, 111 Ag PAC spectroscopy may be applied to probe the flexibility of protein metal sites.

12.
Bioconjug Chem ; 29(4): 1025-1029, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29505242

RESUMEN

Two highly specific biomolecular recognition events, nucleic acid duplex hybridization and DNA-peptide recognition in the minor groove, were coalesced in a miniature ensemble for the first time by covalently attaching a natural AT-hook peptide motif to nucleic acid duplexes via a 2'-amino-LNA scaffold. A combination of molecular dynamics simulations and ultraviolet thermal denaturation studies revealed high sequence-specific affinity of the peptide-oligonucleotide conjugates (POCs) when binding to complementary DNA strands, leveraging the bioinformation encrypted in the minor groove of DNA duplexes. The significant cooperative DNA duplex stabilization may pave the way toward further development of POCs with enhanced affinity and selectivity toward target sequences carrying peptide-binding genetic islands.


Asunto(s)
ADN/química , Oligonucleótidos/química , Péptidos/química , Sitios de Unión , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/química , Prueba de Estudio Conceptual , Conformación Proteica
13.
Bioconjug Chem ; 29(4): 1219-1230, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29437382

RESUMEN

The reaction of unprotected carbohydrates with aminooxy reagents to provide oximes is a key method for the construction of glycoconjugates. Aniline and derivatives serve as organocatalysts for the formation of oximes from simple aldehydes, and we have previously reported that aniline also catalyzes the formation of oximes from the more complex aldehydes, carbohydrates. Here, we present a comprehensive study of the effect of aniline analogues on the formation of carbohydrate oximes and related glycoconjugates depending on organocatalyst structure, pH, nucleophile, and carbohydrate, covering more than 150 different reaction conditions. The observed superiority of the 1,4-diaminobenzene (PDA) catalyst at neutral pH is rationalized by NMR analyses and DFT studies of reaction intermediates. Carbohydrate oxime formation at pH 7 is demonstrated by the formation of a bioactive glycoconjugate from a labile, decorated octasaccharide originating from exopolysaccharides of the soil bacterium Mesorhizobium loti. This study of glycoconjugate formation includes the first direct comparison of aniline-catalyzed reaction rates and equilibrium constants for different classes of nucleophiles, including primary oxyamines, secondary N-alkyl oxyamines, as well as aryl and arylsulfonyl hydrazides. We identified 1,4-diaminobenzene as a superior catalyst for the construction of oxime-linked glycoconjugates under mild conditions.


Asunto(s)
Glicoconjugados/química , Oximas/química , Fenilendiaminas/química , Catálisis , Glicoconjugados/síntesis química , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Mesorhizobium/química , Oximas/síntesis química , Fenilendiaminas/síntesis química , Polisacáridos Bacterianos/síntesis química , Polisacáridos Bacterianos/química
14.
Chemistry ; 23(39): 9297-9305, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28383784

RESUMEN

The rational design of a well-defined protein-like tertiary structure formed by small peptide building blocks is still a formidable challenge. By using peptide-oligonucleotide conjugates (POC) as building blocks, we present the self-assembly of miniature coiled-coil α-helical peptides guided by oligonucleotide duplex and triplex formation. POC synthesis was achieved by copper-free alkyne-azide cycloaddition between three oligonucleotides and a 23-mer peptide, which by itself exhibited multiple oligomeric states in solution. The oligonucleotide domain was designed to furnish a stable parallel triplex under physiological pH, and to be capable of templating the three peptide sequences to constitute a small coiled-coil motif displaying remarkable α-helicity. The formed trimeric complex was characterized by ultraviolet thermal denaturation, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering (SAXS), and molecular modeling. Stabilizing cooperativity was observed between the trimeric peptide and the oligonucleotide triplex domains, and the overall molecular size (ca. 12 nm) in solution was revealed to be independent of concentration. The topological folding of the peptide moiety differed strongly from those of the individual POC strands and the unconjugated peptide, exclusively adopting the designed triple helical structure.


Asunto(s)
Oligonucleótidos/química , Péptidos/química , Secuencia de Aminoácidos , Secuencia de Bases , Catálisis , Dicroismo Circular , Cobre/química , Reacción de Cicloadición , Electroforesis en Gel de Poliacrilamida , Hibridación de Ácido Nucleico , Desnaturalización Proteica , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
15.
Bioconjug Chem ; 28(4): 1214-1220, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28332825

RESUMEN

Mono- and diaminated 2'-amino-LNA monomers were synthesized and introduced into oligonucleotides. Each modification imparts significant stabilization of nucleic acid duplexes and triplexes, excellent sequence selectivity, and significant nuclease resistance. Molecular modeling suggested that structural stabilization occurs via intrastrand electrostatic attraction between the protonated amino groups of the aminated 2'-amino-LNA monomers and the host oligonucleotide backbone.


Asunto(s)
Oligonucleótidos/química , ADN Complementario/metabolismo , Desoxirribonucleasas , Resistencia a Medicamentos , Estabilidad de Medicamentos , Modelos Moleculares , Oligonucleótidos/síntesis química , Oligonucleótidos/metabolismo , ARN Complementario/metabolismo , Electricidad Estática
16.
Nat Commun ; 7: 12294, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27464951

RESUMEN

Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide-oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design.


Asunto(s)
Nanopartículas/química , Oligonucleótidos/química , Péptidos/química , Proteínas/química , Secuencia de Aminoácidos , Dicroismo Circular , Modelos Moleculares , Oligonucleótidos/síntesis química , Péptidos/síntesis química , Desnaturalización Proteica , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Rayos Ultravioleta , Difracción de Rayos X
17.
Angew Chem Int Ed Engl ; 55(7): 2378-81, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26762534

RESUMEN

Controlled self-assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal-ion binding sites, one native, the other abiotic, enabling hierarchical SA through coordination with two different metal ions. Selective attachment of an abiotic 2,2'-bipyridine (bipy) ligand to HI, yielding HI-bipy, enabled Zn(II)-binding hexamers to SA into trimers of hexamers, [[HI-bipy]6]3, driven by octahedral coordination to a Fe(II)  ion. The structures were studied in solution by small-angle X-ray scattering and on surfaces with AFM. The abiotic metal ligand had a higher affinity for Fe(II) than Zn(II)  ions, enabling control of the hexamer formation with Zn(II) and the formation of trimers of hexamers with Fe(II)  ions. This precise control of protein SA to give oligomers of oligomers provides nanoscale structures with potential applications in nanomedicine.


Asunto(s)
Compuestos Ferrosos/química , Insulina/química , Nanoestructuras , Zinc/química , Secuencia de Aminoácidos , Microscopía de Fuerza Atómica , Modelos Moleculares , Datos de Secuencia Molecular
18.
Angew Chem Int Ed Engl ; 54(52): 15756-61, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26563985

RESUMEN

Metal-ion-responsive transcriptional regulators within the MerR family effectively discriminate between mono- and divalent metal ions. Herein we address the origin of the specificity of the CueR protein for monovalent metal ions. Several spectroscopic techniques were employed to study Ag(I) , Zn(II) , and Hg(II) binding to model systems encompassing the metal-ion-binding loop of CueR from E. coli and V. cholerae. In the presence of Ag(I) , a conserved cysteine residue displays a pKa  value for deprotonation of the thiol that is close to the physiological pH value. This property is only observed with the monovalent metal ion. Quantum chemically optimized structures of the CueR metal site with Cys 112 protonated demonstrate that the conserved Ser 77 backbone carbonyl oxygen atom from the other monomer of the homodimer is "pulled" towards the metal site. A common allosteric mechanism of the metalloregulatory members of the MerR family is proposed. For CueR, the mechanism relies on the protonation of Cys 112.

19.
J Org Chem ; 80(16): 8142-9, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26244379

RESUMEN

The first reported twisted bis-lactam, a racemic Tröger's base (TB) analogue (2), was resolved into its enantiomers on a chiral stationary phase HPLC column. The absolute configuration of (+)-2 was determined to be (R,R)-2 by comparing experimental and calculated vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectra. The absolute configuration of (-)-2 was determined by comparing experimental and calculated electronic circular dichroism (ECD) spectra. The corresponding theoretical spectra were calculated using the lowest energy conformation of (R,R)-2 and (S,S)-2 at the B3LYP/6-31G(d,p) level of theory. The absolute configuration of (+)-2 was also determined to (R,R)-2 by anomalous X-ray diffraction (AXRD) in a chiral space group P212121 using Cu-irradiation resulting in a very low Flack parameter of -0.06(3), despite the heaviest element being an oxygen atom, thus unambiguously confirming the results from the spectroscopic studies. We conclude that, for the Tröger's base (TB) analogue (2), we may rank the reliability of the individual methods for AC determination as AXRD ≫ VCD > ECD, while the synergy of all three methods provides very strong confidence in the assigned ACs of (+)-(R,R)-2 and (-)-(S,S)-2.

20.
Chemistry ; 21(8): 3435-42, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25588805

RESUMEN

The mechanism of the molybdenum-catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an Mo(VI) oxo complex, oxidative cleavage of the diol resulting in an Mo(IV) complex, and extrusion of the alkene. We have compared the proposed pathway with several alternatives, and the results have been corroborated by comparison with the molybdenum-catalyzed sulfoxide reduction recently published by Sanz et al. and with experimental observations for the DODH itself. Improved understanding of the mechanism should expedite future optimization of molybdenum-catalyzed biomass transformations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA