Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Biology (Basel) ; 13(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38248476

RESUMEN

Medicinal and aromatic plants' properties, still an interesting research area, are attributed to the presence of various specialized products that possess important pharmacological activities. In the present study, six medicinal/aromatic plants (Sideritis cypria, Origanum dubium, Melissa officinalis, Mentha piperita, Thymus capitatus, and Salvia fruticosa) were evaluated for their phytochemical and nutritive composition, as well as their biological activities, including antioxidant, antimicrobial, and cytotoxic properties. The results obtained indicate that M. piperita was rich in proteins and minerals such as N and Mg, while S. cypria accumulated more K, Na, P, and Ca. The highest content of phenols and flavonoids was observed in M. piperita, followed by O. dubium and T. capitatus, which eventually influenced their high antioxidant capacity. NMR screening revealed the presence of (i) triterpenoids and hydroxycinnamic acid derivatives in M. officinalis; (ii) terpenoids, flavonoids, and phenolic acid derivatives in S. fruticosa; (iii) flavonoids and phenolic acid derivatives in M. piperita; (iv) phenolic monoterpenes in O. dubium and T. capitatus; and (v) terpenoids, flavones, and phenylethanoid glycosides in S. cypria. The results of the antimicrobial activity showed that the tested samples overall had quite good antimicrobial potential. High antibacterial activity was found in O. dubium and T. capitatus, while O. dubium and S. cypria exhibited great antifungal activities. The studied species also had an important effect on the viability of female-derived and colon cancer cells. In particular, in colon cancer cells, the extracts from T. capitatus, M. officinalis, M. piperita, and S. fruticosa exhibited a stronger effect on cell viability in the more metastatic cell line at significantly lower concentrations, indicating an important therapeutic potential in targeting highly metastatic tumors. This finding is worth further investigation. The present study unveiled interesting phytochemical profiles and biological properties of the six medicinal/aromatic plants, which should be further explored, contributing to green chemistry and the possible creation of natural health products for humans' health/nutrition and additives in cosmetics.

3.
Food Chem ; 438: 137976, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37980870

RESUMEN

Pansy and viola edible flowers were grown hydroponically with different levels of Mg and Mn. The nutritional composition was determined using standard methods. Free sugars, fatty acids, organic acids, tocopherols, and phenolic compounds were analyzed using various HPLC and GC devises. The extract's antimicrobial, antioxidant, cytotoxicity, and anti-inflammatory activity were assessed. The results indicated that Mg enrichment negatively affected plant growth and mineral accumulation but improved photosynthetic performance. The edible flowers contained significant amounts of protein, low levels of fat, and varying sugar contents, such as glucose and fructose. Various fatty acids and phenolic compounds were identified, with different concentrations depending on the treatment. The flowers exhibited antioxidant potential, antimicrobial activity, cytotoxic effects, and anti-inflammatory properties. The correlations between the investigated parameters not only expand knowledge on Mg and Mn interaction but also catalyze significant advancements in sustainable agriculture and food health, fostering a healthier and more conscious future.


Asunto(s)
Antiinfecciosos , Viola , Antioxidantes/química , Viola/química , Magnesio/análisis , Manganeso/análisis , Flores/química , Fenoles/análisis , Ácidos Grasos/análisis , Antiinfecciosos/farmacología , Antiinfecciosos/análisis , Antiinflamatorios/análisis , Extractos Vegetales/química
4.
Heliyon ; 9(11): e21644, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027987

RESUMEN

Purslane (Portulaca oleracea L.) is a widespread weed, which is greatly appreciated for its high nutritional value. The present work evaluated the effect of different ammonium/total nitrogen ratios (NH4/Total N: Nr 0.01-0.15) on growth, physiological and biochemical parameters, and nutrient accumulation in different plant parts of hydroponically grown purslane, under two growing seasons, spring and autumn. Young seedlings of purslane were transferred to a Nutrient Film Technique (NFT) system and they were exposed to different Nr levels. The pH and the electrical conductivity of the nutrient solution were kept constant at 5.8 and 2.3 mS cm-1, respectively. After the end of the cultivation periods (19 days for spring and 22 days for autumn), a series of assessments (growth parameters, mineral content in different plant organs, antioxidant status of the plant, etc.) were done. Plant height, leaf number, root fresh weight and plant biomass revealed decreased trends at the higher NH4/total N ratios, especially during the autumn growing season. Total phenols, flavonoids and antioxidant capacity appeared increased at Nr ≤ 0.10 during both seasons (autumn and spring), revealing higher nitrogen accumulation rates and increased water and nutrient use efficiency. Purslane plants grown in Nr 0.05-0.10 revealed a less intense oxidative stress, with decreased lipid peroxidation levels that was the result of the activation of both enzymatic (superoxide dismutase, catalase and peroxidase) and non-enzymatic (ascorbic acid) antioxidant capacity of the plant. Increased Nr resulted in the accumulation of potassium, while calcium and magnesium levels in leaves were decreased. Additionally, the greater water use efficiency was measured for plants grown under Nr 0.01-0.05. Therefore, the recommended ammonium/total nitrogen ratio for purslane production of increased yield, improved nutritional value and efficient use of water and nitrogen sources is to employ Nr of 0.05, while additional care should be addressed during autumn periods as plants are subjected to greater impacts of the Nr ratio.

5.
Food Res Int ; 170: 113044, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316092

RESUMEN

The present study aims to determine the combined effect of cropping system and irrigation regime on the chemical composition and bioactive properties of lemon balm aerial parts. For this purpose, lemon balm plants were grown under two farming systems (conventional farming vs organic farming) and two irrigation levels (full irrigation vs deficit irrigation) and harvested twice throughout the growing period. The collected aerial parts were subjected to three different methods of extractions, namely infusion, maceration and ultrasound-assisted extraction and the obtained extracts were evaluated in terms of chemical profile and bioactivities. Five organic acids with varied composition among the tested treatments were identified in all the tested samples for both harvests, namely, citric, malic, oxalic, shikimic and quinic acid. Regarding phenolic compounds composition, the most abundant ones were rosmarinic acid, lithospermic acid A isomer I and hydroxylsalvianolic E, especially for the maceration and infusion extraction methods. Full irrigation resulted in lower EC50 values than deficit irrigation only in the treatments of the second harvest, while variable cytotoxic and anti-inflammatory effects were recorded in both harvests. Finally, in most cases the lemon balm extracts has similar or better activity than the positive controls, while the antifungal activity of lemon balm extracts was stronger than the antibacterial effects. In conclusion, the results of the present study showed that the implemented agronomic practices, as well as the extraction protocol may significantly affect the chemical profile and bioactivities of lemon balm extracts, suggesting that both the farming system and the irrigation schedule may improve the quality of the extracts depending on the implemented extraction protocol.


Asunto(s)
Melissa , Agricultura , Granjas , Antibacterianos , Extractos Vegetales/farmacología
6.
Phytochemistry ; 209: 113607, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36746369

RESUMEN

Essential oils are extensively used in the food, cosmetic, perfume, pharmaceutical, and agrochemical industries due to their aroma and pharmacological properties. The Lamiaceae family is mainly represented by widely well-known medicinal and aromatic plants that produce essential oil. Over the years, Sideritis L. essential oils have attracted great interest due to their chemical variability among the different taxa and their pharmacological activities. In-depth research of previously published literature was performed on electronic databases with several key search words for the collection of the available data and a total of 128 scientific studies were used since 1983. To date, 155 accepted Sideritis samples have been studied originating from 15 countries and more than 250 compounds have been reported in 87 Sideritis taxa overall. Furthermore, antimicrobial and antioxidant effects have been the most studied pharmacological activities. This review summarizes and critically discusses the research work on the chemical composition and pharmacological activities of essential oil of the genus Sideritis based on the currently valid taxonomy. Additionally, statistical analysis is encompassed to provide a deeper comprehensive understanding of the high chemical polymorphism of Sideritis essential oils. We expect that this review will encourage researchers to investigate unexplored Sideritis taxa and will contribute to revealing uncharted scientific territory and future perspectives on these plants.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Sideritis , Aceites Volátiles/farmacología , Aceites Volátiles/química , Sideritis/química , Antioxidantes/química , Antiinfecciosos/química , Extractos Vegetales/química
7.
Biology (Basel) ; 11(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36552281

RESUMEN

In recent years, the use of natural products such as essential oils (EOs) and other plant extracts for the preservation of fresh produce has attracted much interest from the food industry. Many endemic medicinal and aromatic plants, such as Cypriot oregano (Origanum dubium), present a plethora of properties that can be utilized by the fruit and vegetable sectors of the food industry. The purpose of the present study was to assess the effects of O. dubium EO and hydrosol (at different concentrations and durations of dipping application) for the preservation of tomato and cucumber fruit quality, and their effectiveness as sanitizing agents against two foodborne pathogens (Listeria monocytogenes and Salmonella enterica). The results of this study indicated that increased concentrations of EO, combined with a longer duration of application, resulted in less marketable fruit compared to hydrosol application. Interestingly, EO application at lower concentrations and shorter durations of application (i.e., 0.01% for 5 min) increased fruit antioxidant, ascorbic acid and carotenoid levels (for tomato fruit), suggesting an increase in the nutritional value of the treated fruit, compared to the control. EO and hydrosol were able to decrease the bacterial populations (both bacteria) on fruits. Both products were especially effective against L. monocytogenes, even seven days after their application and storage at 11 °C (up to an approx. 3 log reduction with the EO application). Overall, the results of this study suggest that the use of O. dubium EO and hydrosol could be considered as alternative sanitation means for tomatoes and cucumbers.

8.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555113

RESUMEN

Strawberry is a perishable fruit with a limited shelf life after harvest due to deterioration of quality and the development of gray mold, Rhizopus rot and other minor diseases. In this study, the effectiveness of commercial compounds based on chitosan, phosphoric acid plus micronutrients, and sweet orange essential oil (EO) in reducing decay and optimizing the quality of strawberries was analyzed. The plant canopy of a greenhouse crop was sprayed once and strawberry fruit were harvested three days later. Gray mold infections were evaluated after chilled storage for seven days at 4 ± 0.5 °C followed by five days shelf life. The qualitative parameters were recorded at harvest (initial day) and after three days of storage at room temperature (RT, 20 °C) or after cold storage and shelf life (CS, 4 °C). The application of sweet orange EO increased the antioxidant and flavonoid content at harvest, while a decrease was reported following three days of storage at RT. At the same time, increased ethylene production and weight loss were observed during CS three days after harvesting. Chitosan treatment maintained the harvest fruit quality and was effective in the control of postharvest decay. Our results suggest that the investigated natural compounds could improve strawberry quality after harvest. Since chitosan performed best in terms of maintaining quality and reducing postharvest decay, it could be considered as a good substitute for chemical-synthetic fungicides for the preservation of strawberry postharvest gray mold.


Asunto(s)
Quitosano , Citrus sinensis , Fragaria , Aceites Volátiles , Aceites Volátiles/farmacología , Quitosano/farmacología , Micronutrientes , Hongos , Frutas
9.
Sci Rep ; 12(1): 9320, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35661114

RESUMEN

Salinity is one of the predominant abiotic stress factors that influence the growth and productivity of plants. Salinity adversely impacts the growth responses via ionic toxicity, osmotic stress, impaired nutrients uptake, hormonal disparity, and the over-production of reactive oxygen species. To study the effects of salinity stress (0, 50, 100, and 150 mM) and foliar treatments (dH2O, 2 g L-1 Dobogen biostimulant, 2 g L-1 KNO3, and 2 g L-1 D-glucose) on the growth and physiological responses of Tanacetum balsamita, a factorial experiment was conducted based on the completely randomized design at the research greenhouse of Azarbaijan Shahid Madani University, Iran. The results showed the significant interaction effects of salinity and foliar sprays on chlorophyll a, K+, Na+, Mg2+, Fe2+, Zn2+, Mn2+, and Si content, K/Na ratio, and total phenolics and flavonoids content. The highest phenolic content was acquired with 100 mM salinity and foliar spray of Dobogen and glucose, 50 mM NaCl × KNO3 application, and 50 mM salinity × no-foliar application. The highest K/Na ratio was observed in control plants and controls × KNO3 and/or Dobogen application. The greatest Si content was recorded with no-salinity × Dobogen and KNO3 applications and no-saline × no-foliar (control) plants. The independent effects of treatments influenced malondialdehyde, flavonoids, proline contents, and catalase activity. Chlorophyll b and superoxide dismutase were affected by the salinity. Total soluble solids and Ca2+ content were responsive to the foliar applications. Malondialdehyde and proline content was the highest at 150 mM salinity. Salinity adversely affected the physiological responses of costmary. However, foliar treatments partially ameliorated the salinity effect, and the results with more detailed studies would be advisable to the extension section and pioneer farmers.


Asunto(s)
Tanacetum , Antioxidantes/farmacología , Clorofila A , Flavonoides/farmacología , Glucosa/farmacología , Humanos , Malondialdehído , Fenoles/farmacología , Prolina/farmacología , Salinidad , Estrés Salino , Estrés Fisiológico
11.
Food Microbiol ; 102: 103898, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34809930

RESUMEN

Due to climate change, with contaminated and less fertile soils, and intense weather phenomena, a turn towards hydroponic vegetable production has been made. Hydroponic cultivation of vegetables is considered to be a clean, safe and environmentally friendly growing technique; however, incidence of microbial contamination i.e. foodborne pathogens, might occur, endangering human health. The aim of this study was to investigate the effects of different plant growth stages, pH (values 5, 6, 7, 8) and bacterial inoculum levels (3 and 6 log cfu/mL) on hydroponically cultivated lettuce spiked with Salmonella Enteritidis. The results revealed that the pH and inoculum levels affected the internalization and survival of the pathogen in the hydroponic environment and plant tissue. Younger plants were found to be more susceptible to pathogen internalization compared to older ones. Under the current growing conditions (hydroponics, pH and inoculum levels), no leaf internalization was observed at all lettuce growth stages, despite the bacterium presence in the hydroponic solution. Noticeably, bacteria load at the nutrient solution was lower in low pH levels. These results showed that bacterium presence initiates plant response as indicated by the increased phenols, antioxidants and damage index markers (H2O2, MDA) in order for the plant to resist contamination by the invader. Nutrient solution management can result in Taylor-made recipes for plant growth and possible controlling the survival and growth of S. Enteritidis by pH levels.


Asunto(s)
Microbiología de Alimentos , Lactuca , Salmonella enteritidis , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Hidroponía , Lactuca/microbiología , Viabilidad Microbiana , Nutrientes , Salmonella enteritidis/crecimiento & desarrollo , Temperatura , Verduras/microbiología
12.
Nat Prod Res ; 36(16): 4200-4204, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34498964

RESUMEN

The present study focuses on the polar constituents and biological effects of the methanol extract and the infusion of wild Sideritis sipylea Boiss. from Samos island (Greece), as well as on the nutritional and mineral contents of this plant. The total phenolic content and antioxidant activity were examined. In addition, the anti-acetylcholinesterase property was evaluated, revealing strictly lower results than the control, galanthamine. Furthermore, the nutritional value of the plant is reported herein for the first time, revealing a promising source of protein. To the best of our knowledge, this study is the first work on the infusion of this species and the nutritional value of the plant.


Asunto(s)
Sideritis , Antioxidantes/metabolismo , Antioxidantes/farmacología , Valor Nutritivo , Fenoles/análisis , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Sideritis/metabolismo
13.
Plants (Basel) ; 10(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34961116

RESUMEN

Consumers seek safe, high-nutritional-value products, and therefore maintaining fresh produce quality is a fundamental goal in the food industry. In an effort to eliminate chemical-based sanitizing agents, there has been a shift in recent decades toward the usage of eco-friendly, natural solutions (e.g., essential oils-EOs). In the present study, tomato fruits (Solanum lycopersicum L. cv. Dafni) at breaker and red ripening stage were exposed to sage essential oils (EO: 50 µL L-1 or 500 µL L-1) for 2, 7 and 14 days, at 11 °C and 90% relative humidity (RH). Quality-related attributes were examined during (sustain effect-SE) and following (vapour-induced memory effect-ME; seven days vapours + seven days storage) vapour treatment. In breaker tomatoes, EO-enrichment (sustained effect) retained fruit firmness, respiration rates, and ethylene emission in low EO levels (50 µL L-1). In contrast, breaker fruit metabolism sped up in high EO levels of 500 µL L-1, with decreased firmness, increased rates of respiration and ethylene, and effects on antioxidant metabolism. The effects were more pronounced during the storage period of 14 days, comparing to the fruit exposed to common storage-transit practice. In red fruits, the EOs impacts were evidenced earlier (at two and seven days of storage) with increased rates of respiration and ethylene, increased ß-carotene, and decreased lycopene content. In both breaker and red ripening fruit, EO application decreased weight losses. Considering the fruits pre-exposed to EOs, quality attributes were more affected in green fruits and affected to a lesser level in the red ones. Furthermore, based on appearance, color, and texture evaluations, organoleptic trials demonstrated an overwhelming preference for EO-treated red fruit during choice tests. EOs had lower effects on total phenolics, acidity, total soluble solids, and fruit chroma, with no specific trend for both breaker and red tomatoes. Natural volatiles may aid to retain fruit quality in parallel with their antimicrobial protection offered during storage and transportation of fresh produce. These effects may persist after the EO is removed from the storage conditions.

14.
Plants (Basel) ; 10(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34451743

RESUMEN

Tomato (Solanum lycopersicum L.) is considered one of the most valuable and versatile vegetable crops globally and also serves as a significant model species for fruit developmental biology. Despite its significance, a severe genetic bottleneck and intense selection of genotypes with specific qualitative traits have resulted in the prevalence of a restricted number of (geno)types, also causing a lack of diversity across widespread cultivated types. As a result, the re-emergence of landraces as well as traditional and heirloom varieties is largely acknowledged as a countermeasure to restore phenotypic, phytochemical and genetic diversity while enriching the aroma/taste tomato palette. On those grounds, the Cypriot tomato germplasm was assessed and characterized. Ten landrace accessions were evaluated under greenhouse conditions and data were collected for 24 IPGRI discrete phenotypic traits. Grouping of accessions largely reflected the fruit shape and size; four different fruit types were recorded across accessions (flattened, heart-shaped, rounded and highly rounded). Moreover, a single run panel consisting of ten SSRs was developed and applied in order to genetically characterize 190 Cypriot genotypes and foreign heirloom varieties. Based on genetic indexes it was established that tomato landraces have a rather low level of heterogeneity and genetic variation. Finally, mineral and phytochemical analyses were conducted in order to estimate biochemical attributes (total phenolics, ascorbic acid, lycopene, ß-carotene, total soluble content, titratable acidity) across genotypes; thus, ascertaining that the Cypriot panel has a high nutritional value. Due to the thermo-drought adaptation and tolerance of these genotypes, the current study serves as a roadmap for future breeding efforts in order to incorporate desirable traits or develop novel tomato lines combining resilience and alimentary value.

15.
Plants (Basel) ; 10(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34451709

RESUMEN

Heavy metal contamination is a major health issue concerning the commercial production of medicinal and aromatic plants (MAPs) that are used for the extraction of bioactive molecules. Copper (Cu) is an anthropogenic contaminant that, at toxic levels, can accumulate in plant tissues, affecting plant growth and development. On the other hand, plant response to metal-induced stress may involve the synthesis and accumulation of beneficial secondary metabolites. In this study, hydroponically grown Pelargonium graveolens plants were exposed to different Cu concentrations in a nutrient solution (4, 25, 50, 100 µM) to evaluate the effects Cu toxicity on plant growth, mineral uptake and distribution in plants, some stress indicators, and the accumulation of bioactive secondary metabolites in leaf tissues. P. graveolens resulted in moderately tolerant Cu toxicity. At Cu concentrations up to 100 µM, biomass production was preserved and was accompanied by an increase in phenolics and antioxidant capacity. The metal contaminant was accumulated mainly in the roots. The leaf tissues of Cu-treated P. graveolens may be safely used for the extraction of bioactive molecules.

16.
Plants (Basel) ; 10(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205988

RESUMEN

The preservation of fresh produce quality is a major aim in the food industry since consumers demand safe and of high nutritional value products. In recent decades there has been a turn towards the use of eco-friendly, natural products (i.e., essential oils-EOs) in an attempt to reduce chemical-based sanitizing agents (i.e., chlorine and chlorine-based agents). The aim of this study was to evaluate the efficacy of an eco-friendly product (EP-based on rosemary and eucalyptus essential oils) and two different application methods (vapor and dipping) on the quality attributes of tomato fruits throughout storage at 11 °C and 90% relative humidity for 14 days. The results indicated that overall, the EP was able to maintain the quality of tomato fruits. Dipping application was found to affect less the quality attributes of tomato, such as titratable acidity, ripening index and antioxidant activity compared to the vapor application method. Vapor application of 0.4% EP increased fruit's antioxidant activity, whereas tomatoes dipped in EP solution presented decreased damage index (hydrogen peroxide and lipid peroxidation levels), activating enzymes antioxidant capacity (catalases and peroxidases). Moreover, higher EP concentration (up to 0.8%) resulted in a less acceptable product compared to lower concentration (0.4%). Overall, the results from the present study suggest that the investigated EP can be used for the preservation of fresh produce instead of the current commercial sanitizing agent (chlorine); however, the method of application and conditions of application must be further assessed for every commodity tested.

17.
Foods ; 10(3)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801834

RESUMEN

Increasing demands by consumers for fresh, nutritional, and convenient food has led to the increase of fresh-cut produce market. Nowadays, there is a turn towards the investigation of natural products (i.e., essential oils, organic acids, and edible coatings) in an effort to lower the usage of chemical synthetic compounds (i.e., chlorine) as postharvest sanitizers. The aim of the present study was to assess the effectiveness of Origanum majorana essential oil (EO), ascorbic acid (AA), chitosan, and their combinations on quality attributes of fresh-cut lettuce stored for six days at 7 °C. When applied, Chitosan+AA resulted to a less acceptable product (visual quality and aroma), while the application of marjoram EO was able to preserve the visual quality of fresh-cut lettuce and at the same time resulted in a pleasant aroma. The application of EO+AA and Chitosan+AA increased total phenolics and antioxidant levels of fresh-cut lettuce on the fourth and sixth day of storage. The EO and EO+AA increased damage index (hydrogen peroxide and lipid peroxidation) of fresh-cut lettuce, while at the same time these treatments decreased the activity of enzymes related with plant tissue browning (i.e., peroxidase activity and polyphenol oxidase). Chitosan decreased total valuable counts and yeasts and molds counts on the sixth day of storage, while EO, AA, EO+Chitosan, and Chitosan+AA decreased yeasts and molds after four days of application. The findings of the present work indicating that the combination of marjoram EO, AA, and chitosan could be considered further as alternative means for fresh-cut produce preservation.

18.
Chem Biodivers ; 18(3): e2000966, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33594798

RESUMEN

Sideritis cypria Post is an endemic and endangered species of Northern Cyprus. The overall aim of the present study was to evaluate the total phenolic content, the antioxidant, the cytotoxic and the antimicrobial activity of the methanol extract obtained from the aerial parts of cultivated S. cypria. A bio-guided approach led to the isolation of 27 chemical compounds by using various analytical techniques. Their structures were elucidated on the basis of 1D and 2D NMR spectroscopy. The crude extract exerted strong antioxidant activity (DPPH and FRAP assays) which was attributed to its high total phenolic content. Furthermore, groups rich in phenolic content showed highest antioxidant property, whereas groups with phytosterols, diterpenoids and apigenin derivatives exerted cytotoxic effects in MDA-MB231 cancer cell line by the MTT method. Moreover, the cytotoxic activity of four isolated apigenin derivatives was evaluated in the same cancer cells. The antimicrobial activity of the extract and groups were measured, demonstrating lack of activity. To the best of our knowledge, this survey is the first report on the biological activities of the methanol extract of S. cypria.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Sideritis/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Compuestos de Bifenilo/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Metanol/química , Estructura Molecular , Picratos/antagonistas & inhibidores , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Estereoisomerismo , Relación Estructura-Actividad
19.
Plants (Basel) ; 10(2)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573332

RESUMEN

Climate change will increase the occurrence of plants being simultaneously subjected to drought and pathogen stress. Drought can alter the way in which plants respond to pathogens. This research addresses how grapevine responds to the concurrent challenge of drought stress and Plasmopara viticola, the causal agent of downy mildew, and how one stress affects the other. Self-rooted cuttings of the drought-tolerant grapevine cultivar Xynisteri and the drought-sensitive cultivar Chardonnay were exposed to full or deficit irrigation (40% of full irrigation) and artificially inoculated with P. viticola in vitro or in planta. Leaves were sampled at an early infection stage to determine the influence of the single and combined stresses on oxidative parameters, chlorophyll, and phytohormones. Under full irrigation, Xynisteri was more susceptible to P. viticola than the drought-sensitive cultivar Chardonnay. Drought stress increased the susceptibility of grapevine leaves inoculated in vitro, but both cultivars showed resistance against P. viticola when inoculated in planta. Abscisic acid, rather than jasmonic acid and salicylic acid, seemed to play a prominent role in this resistance. The irrigation-dependent susceptibility observed in this study indicates that the practices used to mitigate the effects of climate change may have a profound impact on plant pathogens.

20.
Environ Sci Pollut Res Int ; 28(19): 24279-24290, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32026184

RESUMEN

Large quantities of spent coffee grounds (SCG) are generated the last decades, and their recycling is of research interest challenge. In the present study, SCG was tested to substitute peat (P) in substrate mixtures for the production of Brassica seedlings. Seeds of cauliflower, broccoli, and cabbage were placed in substrate mixtures containing 0-2.5-5-10% SCG. The mixture of SCG with peat affected several physicochemical characteristics of the growing media, providing also considerable amount of mineral elements for the seedling growth needs. Seed emergence was stimulated in 2.5-5% of SCG for cauliflower and at 2.5% of SCG for cabbage, while 10% of SCG decreased the percentage and increased the mean emergence time of the examined species. Plant biomass and leaf number were increased at 2.5% SCG for broccoli and cabbage but maintained at cauliflower when compared with control. The SCG at 10% decreased stomatal conductance of broccoli and cabbage (including 2.5-5% SCG in cauliflower) while chlorophyll content was increased at 10% of SCG media. The incorporation of SCG impacted the mineral content accumulated in plants with increases in nitrogen, potassium, and phosphorus and decreases in magnesium and iron content. Total phenolics and antioxidant activity (DPPH, FRAP) decreased at ≥ 5% SCG at cauliflower and cabbage or unchanged for broccoli when compared with the control. The cabbage seedlings grown in 10% SCG media subjected to stress with increases in the production of hydrogen peroxides and lipid peroxidation, and reflected changes in the antioxidant enzymatic metabolism (catalase, superoxide dismutase). The present study demonstrates that SCG (up to 5%) can be used for seed germination biostimulants and/or partially substitute the peat for Brassica seedling production.


Asunto(s)
Brassica , Casas Cuna , Café , Humanos , Lactante , Plantones , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA