Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
NanoImpact ; 35: 100511, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38750963

RESUMEN

To fully understand and predict the impact of nanotechnologies, a truly multidisciplinary approach is required. However, the practicalities relating to how innovation, commercialisation, risk assessment, informatics, and governance in nanotechnology should intersect remain somewhat of a black box. To begin to shed light on this intersection, we identify a need to place 'purpose' at the heart of the nanotechnology innovation ecosystem. There is a growing appetite for responsible, sustainable, and purposeful innovation from business, financiers, regulators, consumers, and other stakeholders - an appetite that we foresee will permeate all spheres of commercialisation, including that of nanotechnology. Ultimately, nanotechnologies will only have the ability to sustainably address the global challenges of the 21st century if they are developed and implemented with purpose, and in full consideration of their social and environmental impacts. We (re)define purpose as it relates to sustainable nanotechnology innovation, in an effort to create a more-broadly shared language that can bridge the diverse stakeholder needs and perspectives that are required to address these challenges. To enable innovation, standardisation, promote interdisciplinarity, increase transparency, and enhance regulatory and corporate accountability, we propose a four stage, principles-based framework for purposeful nanotechnology development. This framework offers a practical way forward for nanotechnology innovation, shedding light on how nano-impact can be approached by multidisciplinary teams and describing how interrelated systems and stakeholders can interact successfully to achieve shared goals.

2.
ACS Mater Au ; 3(4): 310-320, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38090131

RESUMEN

Antibiotic resistance continues to be an ongoing problem in global public health despite interventions to reduce antibiotic overuse. Furthermore, it threatens to undo the achievements and progress of modern medicine. To address these issues, the development of new alternative treatments is needed. Metallic nanoparticles have become an increasingly attractive alternative due to their unique physicochemical properties that allow for different applications and their various mechanisms of action. In this study, gallium nanoparticles (Ga NPs) were tested against several clinical strains of Pseudomonas aeruginosa (DFU53, 364077, and 365707) and multi-drug-resistant Acinetobacter baumannii (MRAB). The results showed that Ga NPs did not inhibit bacterial growth when tested against the bacterial strains using a broth microdilution assay, but they exhibited effects in biofilm production in P. aeruginosa DFU53. Furthermore, as captured by atomic force microscopy imaging, P. aeruginosa DFU53 and MRAB biofilms underwent morphological changes, appearing rough and irregular when they were treated with Ga NPs. Although Ga NPs did not affect planktonic bacterial growth, their effects on both biofilm formation and established biofilm demonstrate their potential role in the race to combat antibiotic resistance, especially in biofilm-related infections.

3.
Free Radic Biol Med ; 209(Pt 2): 239-251, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37866756

RESUMEN

The term 'vitamin C' describes a group of compounds with antiscorbutic activity of l-ascorbic acid (AA). Despite AA's omnipresence in plant-derived foods, its derivatives have also been successfully implemented in the food industry as antioxidants, including the D-isomers, which lack vitamin C activity. This study aimed to determine the relationship between redox-related activities for five derivatives of AA using electrochemical, chemical, and biological approaches. Here we report that AA, C-vitamers, and other commonly consumed AA derivatives differ in their redox-related activities. As long as the physiological range of concentrations was maintained, there was no simple relationship between their redox properties and biological activity. Clear distinctions in antioxidant activity were observed mostly at high concentrations, which were strongly correlated with electrochemical and kinetic parameters describing redox-related properties of the studied compounds. Despite obvious similarities in chemical structures and antioxidant activity, we showed that C-vitamers may exhibit different nutrigenomic effects. Together, our findings provide a deeper insight into so far underinvestigated area combining chemical properties with biological activities of commonly applied AA derivatives.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Antioxidantes/farmacología , Nutrigenómica , Vitaminas , Cinética
4.
Biomacromolecules ; 24(11): 4783-4797, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37747808

RESUMEN

Hydrophobins are remarkable proteins due to their ability to self-assemble into amphipathic coatings that reverse surface wettability. Here, the versatility of the Class I hydrophobins EASΔ15 and DewY in diverse nanosuspension and coating applications is demonstrated. The hydrophobins are shown to coat or emulsify a range of substrates including oil, hydrophobic drugs, and nanodiamonds and alter their solution and surface behavior. Surprisingly, while the coatings confer new properties, only a subset is found to be resistant to hot detergent treatment, a feature previously thought to be characteristic of the functional amyloid form of Class I hydrophobins. These results demonstrate that substrate surface properties can influence the molecular structures and physiochemical properties of hydrophobin and possibly other functional amyloids. Functional amyloid assembly with different substrates and conditions may be analogous to the propagation of different polymorphs of disease-associated amyloid fibrils with distinct structures, stability, and clinical phenotypes. Given that amyloid formation is not required for Class I hydrophobins to serve diverse applications, our findings open up new opportunities for their use in applications requiring a range of chemical and physical properties. In hydrophobin nanotechnological applications where high stability of assemblies is required, simultaneous structural and functional characterization should be carried out. Finally, while results in this study pertain to synthetic substrates, they raise the possibility that at least some members of the pseudo-Class I and Class III hydrophobins, reported to form assemblies with noncanonical properties, may be Class I hydrophobins adopting alternative structures in response to environmental cues.


Asunto(s)
Amiloide , Proteínas Fúngicas , Proteínas Fúngicas/química , Humectabilidad , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Secuencia de Aminoácidos , Amiloide/química , Proteínas Amiloidogénicas
5.
Adv Drug Deliv Rev ; 199: 114965, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315899

RESUMEN

The delivery of cures for retinal diseases remains problematic. There are four main challenges: passing through multiple barriers of the eye, the delivery to particular retinal cell types, the capability to carry different forms of therapeutic cargo and long-term therapeutic efficacy. Lipid-based nanoparticles (LBNPs) are potent to overcome these challenges due to their unique merits: amphiphilic nanoarchitectures to pass biological barriers, vary modifications with specific affinity to target cell types, flexible capacity for large and mixed types of cargos and slow-release formulations for long-term treatment. We have reviewed the latest research on the applications of LBNPs for treating retinal diseases and categorized them by different payloads. Furthermore, we identified technical barriers and discussed possible future development for LBNPs to expand the therapeutic potential in treating retinal diseases.


Asunto(s)
Nanopartículas , Enfermedades de la Retina , Humanos , Portadores de Fármacos/uso terapéutico , Lípidos/uso terapéutico , Liposomas , Enfermedades de la Retina/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
6.
Biomater Res ; 27(1): 35, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37098610

RESUMEN

BACKGROUND: Respiratory diseases are the 2nd leading cause of death globally. The current treatments for chronic lung diseases are only supportive. Very few new classes of therapeutics have been introduced for lung diseases in the last 40 years, due to the lack of reliable lung models that enable rapid, cost-effective, and high-throughput testing. To accelerate the development of new therapeutics for lung diseases, we established two classes of lung-mimicking models: (i) healthy, and (ii) diseased lungs - COPD. METHODS: To establish models that mimic the lung complexity to different extents, we used five design components: (i) cell type, (ii) membrane structure/constitution, (iii) environmental conditions, (iv) cellular arrangement, (v) substrate, matrix structure and composition. To determine whether the lung models are reproducible and reliable, we developed a quality control (QC) strategy, which integrated the real-time and end-point quantitative and qualitative measurements of cellular barrier function, permeability, tight junctions, tissue structure, tissue composition, and cytokine secretion. RESULTS: The healthy model is characterised by (i) continuous tight junctions, (ii) physiological cellular barrier function, (iii) a full thickness epithelium composed of multiple cell layers, and (iv) the presence of ciliated cells and goblet cells. Meanwhile, the disease model emulates human COPD disease: (i) dysfunctional cellular barrier function, (ii) depletion of ciliated cells, and (ii) overproduction of goblet cells. The models developed here have multiple competitive advantages when compared with existing in vitro lung models: (i) the macroscale enables multimodal and correlative characterisation of the same model system, (ii) the use of cells derived from patients that enables the creation of individual models for each patient for personalised medicine, (iii) the use of an extracellular matrix proteins interface, which promotes physiological cell adhesion and differentiation, (iv) media microcirculation that mimics the dynamic conditions in human lungs. CONCLUSION: Our model can be utilised to test safety, efficacy, and superiority of new therapeutics as well as to test toxicity and injury induced by inhaled pollution or pathogens. It is envisaged that these models can also be used to test the protective function of new therapeutics for high-risk patients or workers exposed to occupational hazards.

7.
Burns Trauma ; 11: tkac052, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36694861

RESUMEN

Background: Excessive scarring and fibrosis are the most severe and common complications of burn injury. Prolonged exposure to high levels of glucocorticoids detrimentally impacts on skin, leading to skin thinning and impaired wound healing. Skin can generate active glucocorticoids locally through expression and activity of the 11ß-hydroxysteroid dehydrogenase type 1 enzyme (11ß-HSD1). We hypothesised that burn injury would induce 11ß-HSD1 expression and local glucocorticoid metabolism, which would have important impacts on wound healing, fibrosis and scarring. We additionally proposed that pharmacological manipulation of this system could improve aspects of post-burn scarring. Methods: Skin 11ß-HSD1 expression in burns patients and mice was examined. The impacts of 11ß-HSD1 mediating glucocorticoid metabolism on burn wound healing, scar formation and scar elasticity and quality were additionally examined using a murine 11ß-HSD1 genetic knockout model. Slow-release scaffolds containing therapeutic agents, including active and inactive glucocorticoids, were developed and pre-clinically tested in mice with burn injury. Results: We demonstrate that 11ß-HSD1 expression levels increased substantially in both human and mouse skin after burn injury. 11ß-HSD1 knockout mice experienced faster wound healing than wild type mice but the healed wounds manifested significantly more collagen deposition, tensile strength and stiffness, features characteristic of excessive scarring. Application of slow-release prednisone, an inactive glucocorticoid, slowed the initial rate of wound closure but significantly reduced post-burn scarring via reductions in inflammation, myofibroblast generation, collagen production and scar stiffness. Conclusions: Skin 11ß-HSD1 expression is a key regulator of wound healing and scarring after burn injury. Application of an inactive glucocorticoid capable of activation by local 11ß-HSD1 in skin slows the initial rate of wound closure but significantlyimproves scar characteristics post burn injury.

8.
ACS Appl Mater Interfaces ; 14(7): 9685-9696, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35133137

RESUMEN

Emerging and re-emerging infections are a global threat driven by the development of antimicrobial resistance due to overuse of antimicrobial agents and poor infection control practices. Implantable devices are particularly susceptible to such infections due to the formation of microbial biofilms. Furthermore, the introduction of implants into the body often results in inflammation and foreign body reactions. The antimicrobial and anti-inflammatory properties of gallium (Ga) have been recognized but not yet utilized effectively to improve implantable device integration. Furthermore, defensin (De, hBD-1) has potent antimicrobial activity in vivo as part of the innate immune system; however, this has not been demonstrated as successfully when used in vitro. Here, we combined Ga and De to impart antimicrobial activity and anti-inflammatory properties to polymer-based implantable devices. We fabricated polylactic acid films, which were modified using Ga implantation and subsequently functionalized with De. Ga-ion implantation increased surface roughness and increased stiffness. Ga implantation and defensin immobilization both independently and synergistically introduced antimicrobial activity to the surfaces, significantly reducing total live bacterial biomass. We demonstrated, for the first time, that the antimicrobial effects of De were unlocked by its surface immobilization. Ga implantation of the surface also resulted in reduced foreign body giant cell formation and expression of proinflammatory cytokine IL-1ß. Cumulatively, the treated surfaces were able to kill bacteria and reduce inflammation in comparison to the untreated control. These innovative surfaces have the potential to prevent biofilm formation without inducing cellular toxicity or inflammation, which is highly desired for implantable device integration.


Asunto(s)
Antiinfecciosos , Galio , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Biopelículas , Materiales Biocompatibles Revestidos/farmacología , Defensinas/farmacología , Galio/farmacología , Propiedades de Superficie
9.
J Cell Sci ; 135(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35019142

RESUMEN

Current medicine has only taken us so far in reducing disease and tissue damage. Extracellular vesicles (EVs), which are membranous nanostructures produced naturally by cells, have been hailed as a next-generation medicine. EVs deliver various biomolecules, including proteins, lipids and nucleic acids, which can influence the behaviour of specific target cells. Since EVs not only mirror composition of their parent cells but also modify the recipient cells, they can be used in three key areas of medicine: regenerative medicine, disease detection and drug delivery. In this Review, we discuss the transformational and translational progress witnessed in EV-based medicine to date, focusing on two key elements: the mechanisms by which EVs aid tissue repair (for example, skin and bone tissue regeneration) and the potential of EVs to detect diseases at an early stage with high sensitivity and specificity (for example, detection of glioblastoma). Furthermore, we describe the progress and results of clinical trials of EVs and demonstrate the benefits of EVs when compared with traditional medicine, including cell therapy in regenerative medicine and solid biopsy in disease detection. Finally, we present the challenges, opportunities and regulatory framework confronting the clinical application of EV-based products.


Asunto(s)
Vesículas Extracelulares , Medicina Regenerativa , Proteínas , Cicatrización de Heridas
10.
Exp Eye Res ; 215: 108906, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34953864

RESUMEN

Müller cells maintain homeostatic functions in the retina. Their dysfunction leads to irreversible retinal diseases. Oxidative injury is a leading cause of retinal cytotoxicity. Our previous studies reported several betulinic acid (BA) derivatives can protect Müller cells from oxidative injury but achieving pharmacologically effective concentrations in the Müller cells could be a limitation. To optimise cellular delivery, we encapsulated the BA analogues H3, H5 and H7 into the clinically approved Compritol 888 and HD5 ATO solid lipid nanoparticles (SLNs) using the micro-emulsion method. The cytoprotective effects of these SLN-formulations were determined in human MIO-M1 cells. We found cytoprotection by H3 and H5 SLN-formulations was significantly enhanced, which was evident at concentrations much lower than those required with the free agents. Both SLN-formulations prolonged the duration of action of these agents. The most effective agent H5 delivered in 888 ATO SLNs attenuated glutamate-induced ROS formation and the associated necrosis in MIO-M1 cells. Overall, SLNs have emerged as promising delivery carriers for BA derivatives enhancing their protective effects against oxidative injury in human Müller cells. Our study is the first to show SLNs can be a viable route to delivery agents with improved efficacy and stability into human Müller cells favoring the treatment/prevention of retinal diseases.


Asunto(s)
Nanopartículas , Enfermedades de la Retina , Portadores de Fármacos , Células Ependimogliales , Humanos , Liposomas , Estrés Oxidativo , Triterpenos Pentacíclicos , Ácido Betulínico
11.
ACS Nano ; 15(12): 18608-18623, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34910476

RESUMEN

Nanotechnology has important roles to play in international efforts in sustainability. We discuss how current and future capabilities in nanotechnology align with and support the United Nations' Sustainable Development Goals. We argue that, as a field, we can accelerate the progress toward these goals both directly through technological solutions and through our special interdisciplinary skills in communication and tackling difficult challenges. We discuss the roles of targeting solutions, technology translation, the circular economy, and a number of examples from national efforts around the world in reaching these goals. We have formed a network of leading nanocenters to address these challenges globally and seek to recruit others to join us.


Asunto(s)
Desarrollo Sostenible , Naciones Unidas , Nanotecnología
12.
Nanomaterials (Basel) ; 11(6)2021 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072581

RESUMEN

Extracellular vesicles (EVs) are nanoparticles released by cells that contain a multitude of biomolecules, which act synergistically to signal multiple cell types. EVs are ideal candidates for promoting tissue growth and regeneration. The tissue regenerative potential of EVs raises the tantalizing possibility that immobilizing EVs on implant surfaces could potentially generate highly bioactive and cell-instructive surfaces that would enhance implant integration into the body. Such surfaces could address a critical limitation of current implants, which do not promote bone tissue formation or bond bone. Here, we developed bioactive titanium surface coatings (SurfEV) using two types of EVs: secreted by decidual mesenchymal stem cells (DEVs) and isolated from fermented papaya fluid (PEVs). For each EV type, we determined the size, morphology, and molecular composition. High concentrations of DEVs enhanced cell proliferation, wound closure, and migration distance of osteoblasts. In contrast, the cell proliferation and wound closure decreased with increasing concentration of PEVs. DEVs enhanced Ca/P deposition on the titanium surface, which suggests improvement in bone bonding ability of the implant (i.e., osteointegration). EVs also increased production of Ca and P by osteoblasts and promoted the deposition of mineral phase, which suggests EVs play key roles in cell mineralization. We also found that DEVs stimulated the secretion of secondary EVs observed by the presence of protruding structures on the cell membrane. We concluded that, by functionalizing implant surfaces with specialized EVs, we will be able to enhance implant osteointegration by improving hydroxyapatite formation directly at the surface and potentially circumvent aseptic loosening of implants.

13.
Front Bioeng Biotechnol ; 9: 669537, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34164385

RESUMEN

Extracellular vesicles (EVs) have been lauded as next-generation medicines, but very few EV-based therapeutics have progressed to clinical use. Limited clinical translation is largely due to technical barriers that hamper our ability to mass produce EVs, i.e., to isolate, purify, and characterize them effectively. Technical limitations in comprehensive characterization of EVs lead to unpredicted biological effects of EVs. Here, using a range of optical and non-optical techniques, we showed that the differences in molecular composition of EVs isolated using two isolation methods correlated with the differences in their biological function. Our results demonstrated that the isolation method determines the composition of isolated EVs at single and sub-population levels. Besides the composition, we measured for the first time the dry mass and predicted sedimentation of EVs. These parameters were likely to contribute to the biological and functional effects of EVs on single cell and cell cultures. We anticipate that our new multiscale characterization approach, which goes beyond traditional experimental methodology, will support fundamental understanding of EVs as well as elucidate the functional effects of EVs in in vitro and in vivo studies. Our findings and methodology will be pivotal for developing optimal isolation methods and establishing EVs as mainstream therapeutics and diagnostics. This innovative approach is applicable to a wide range of sectors including biopharma and biotechnology as well as to regulatory agencies.

14.
Sci Rep ; 11(1): 12282, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112813

RESUMEN

Food synergy concept is suggested to explain observations that isolated antioxidants are less bioactive than real foods containing them. However, mechanisms behind this discrepancy were hardly studied. Here, we demonstrate the profound impact of interactions between two common food flavonoids (individual: aglycones quercetin-Q and naringenin-N- or their glycosides rutin-R and naringin-N+ vs. mixed: QN- and RN+) on their electrochemical properties and redox-related bioactivities. N- and N+ seemed weak antioxidants individually, yet in both chemical and cellular tests (DPPH and CAA, respectively), they increased reducing activity of mixtures synergistically. In-depth measurements (differential pulse voltammetry) pointed to kinetics of oxidation reaction as decisive factor for antioxidant power. In cellular (HT29 cells) tests, the mixtures exhibited properties of a new substance rather than those of components. Pure flavonoids did not influence proliferation; mixtures stimulated cell growth. Individual flavonoids tended to decrease global DNA methylation with growing concentration; this effect was more pronounced for mixtures, but not concentration-dependent. In nutrigenomic studies, expression of gene set affected by QN- differed entirely from common genes modulated by individual components. These results question the current approach of predicting bioactivity of mixtures based on research with isolated antioxidants.


Asunto(s)
Antioxidantes/farmacología , Oxidación-Reducción/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Supervivencia Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Interacciones Farmacológicas , Flavanonas/química , Flavanonas/farmacología , Humanos , Estructura Molecular , Polifenoles/química , Polifenoles/farmacología , Quercetina/química , Quercetina/farmacología
15.
ACS Nano ; 15(3): 4710-4727, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33626869

RESUMEN

Orally administered Ag2S quantum dots (QDs) rapidly cross the small intestine and are taken up by the liver. Metformin and nicotinamide mononucleotide (NMN) target metabolic and aging processes within the liver. This study examined the pharmacology and toxicology of QD-based nanomedicines as carriers of metformin and NMN in young and old mice, determining if their therapeutic potency and reduced effects associated with aging could be improved. Pharmacokinetic studies demonstrated that QD-conjugated metformin and NMN have greater bioavailability, with selective accumulation in the liver following oral administration compared to unconjugated formulations. Pharmacodynamic data showed that the QD-conjugated medicines had increased physiological, metabolic, and cellular potency compared to unconjugated formulations (25× metformin; 100× NMN) and highlighted a shift in the peak induction of, and greater metabolic response to, glucose tolerance testing. Two weeks of treatment with low-dose QD-NMN (0.8 mg/kg/day) improved glucose tolerance tests in young (3 months) mice, whereas old (18 and 24 months) mice demonstrated improved fasting and fed insulin levels and insulin resistance. High-dose unconjugated NMN (80 mg/kg/day) demonstrated improvements in young mice but not in old mice. After 100 days of QD (320 µg/kg/day) treatment, there was no evidence of cellular necrosis, fibrosis, inflammation, or accumulation. Ag2S QD nanomedicines improved the pharmacokinetic and pharmacodynamic properties of metformin and NMN by increasing their therapeutic potency, bypassing classical cellular uptake pathways, and demonstrated efficacy when drug alone was ineffective in aging mice.


Asunto(s)
Metformina , Puntos Cuánticos , Envejecimiento , Animales , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Nanomedicina , Mononucleótido de Nicotinamida
17.
ACS Biomater Sci Eng ; 7(1): 83-89, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33356132

RESUMEN

Human hair keratins have proven to be a viable biomaterial for diverse regenerative applications. However, the most significant characteristic of this material, the ability to self-assemble into nanoscale intermediate filaments, has not been exploited. Herein, we successfully demonstrated the induction of hair-extracted keratin self-assembly in vitro to form dense, homogeneous, and continuous nanofibrous networks. These networks remain hydrolytically stable in vitro for up to 5 days in complete cell culture media and are compatible with primary human dermal fibroblasts and keratinocytes. These results enhance the versatility of human hair keratins for applications where structured assembly is of benefit.


Asunto(s)
Filamentos Intermedios , Queratinas Específicas del Pelo , Fibroblastos , Cabello , Humanos , Queratinocitos
18.
Anal Methods ; 12(48): 5908-5915, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33290459

RESUMEN

Direct surface-enhanced Raman scattering (SERS) has contributed to characterizing extracellular vesicles (EVs) by providing molecular signatures. However, little work has been carried out to understand the heterogeneity of EVs created by different methods or from different biological sources. Herein, we pioneered the use of positively charged gold-silver nanostars to explore the SERS profiles of different EVs. The physical features of EVs from cancer cells including the size, concentration, morphology and surface potential have been characterized via nanoparticle tracking analysis, transmission electron microscopy and zeta potential analysis. The results show that negatively charged EVs are attracted to positively charged gold-silver nanostar surfaces via electrostatic forces resulting in SERS spectra showing characteristic vibrational modes of the different components of EVs (i.e. proteins, lipids and nucleic acids). SERS data were complemented by other spectroscopic techniques including atomic force microscopy-infrared spectroscopy, UV-visible absorbance spectroscopy and fluorescence spectroscopy providing a more complete molecular picture of EVs. SERS signatures of EVs from different origins, batches, and isolation approaches were compared and analyzed. A statistical method (principal component analysis-linear discriminant analysis) was utilized to differentiate EV subtypes. Consequently, a desirable discrimination outcome for blind samples was obtained. This study provides novel insights to deepen our understanding of EV heterogeneity.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Oro , Microscopía de Fuerza Atómica , Neoplasias/genética , Plata , Espectrometría Raman
19.
Mater Sci Eng C Mater Biol Appl ; 116: 111178, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32806326

RESUMEN

OBJECTIVES: To synthesize and characterize brushite particles in the presence of acidic monomers (acrylic acid/AA, citric acid/CA, and methacryloyloxyethyl phosphate/MOEP) and evaluate the effect of these particles on degree of conversion (DC), flexural strength/modulus (FS/FM) and ion release of experimental composites. METHODS: Particles were synthesized by co-precipitation with monomers added to the phosphate precursor solution and characterized for monomer content, size and morphology. Composites containing 20 vol% brushite and 40 vol% reinforcing glass were tested for DC, FS and FM (after 24 h and 60 d in water), and 60-day ion release. Data were subjected to ANOVA/Tukey tests (DC) or Kruskal-Wallis/Dunn tests (FS and FM, alpha: 5%). RESULTS: The presence of acidic monomers affected particle morphology. Monomer content on the particles was low (0.1-1.4% by mass). Composites presented similar DC. For FS/24 h, only the composite containing DCPD_AA was statistically similar to the composite containing 60 vol% of reinforcing glass (without brushite, "control"). After 60 days, all brushite-containing materials showed similar FS, statistically lower than the control composite (p<0.01). Composites containing DCPD_AA, DCPD_MOEP or DCPD_U ("unmodified") showed statistically similar FM/24 h, higher than the control composite. After prolonged immersion, all composites were similar to the control composite, except DCPD_AA. Cumulative ion release ranged from 21 ppm to 28 ppm (calcium) and 9 ppm to 17 ppm (phosphate). Statistically significant reductions in ion release between 15 and 60 days were detected only for the composite containing DCPD_MOEP. SIGNIFICANCE: Acidic monomers added to the synthesis affected brushite particle morphology. After 60-day storage in water, composite strength was similar among all brushite-containing composites. Ion release was sustained for 60 days and it was not affected by particle morphology.


Asunto(s)
Fosfatos de Calcio , Resinas Compuestas , Materiales Dentales , Resistencia Flexional , Ensayo de Materiales , Metacrilatos , Docilidad
20.
Langmuir ; 36(37): 11138-11146, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32856922

RESUMEN

The fatty acid-based microparticles containing iron oxide nanoparticles and paclitaxel (PAX) are a viable proposition for the treatment of lung cancer. The microparticles inhaled as a dry powder can be guided to selected locations using an external magnetic field, and when accumulated there, the active compound release can be triggered by local hyperthermia. However, this general strategy requires that the active compound is released from microparticles and can reach the targeted cells before microparticles are removed. Isothermal titration calorimetry was used to demonstrate that the components of microparticles were released and transferred to albumins and lipid bilayers. The morphology of the measured particulates was studied with scanning electron microscopy and dynamic light scattering. To determine the cytotoxicity of microparticles, cell culture studies were done. It has been shown that the transfer efficiency depends predominantly on the fatty acid composition of microparticles, which, together with the active ingredient, accumulate predominantly in membrane structures after being released from microparticles and before entering the cytoplasm. The release process is sufficient; hence, paclitaxel-loaded microparticles effectively suppressed the proliferation of A549 human lung epithelial cells of malignant origin (IC50 values for both lauric acid-based and myristic/palmitic-based microparticles containing paclitaxel were below 0.375 µg/mL), while reference microparticles were noncytotoxic.


Asunto(s)
Ácidos Grasos , Neoplasias Pulmonares , Células A549 , Portadores de Fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Microscopía Electrónica de Rastreo , Paclitaxel/toxicidad , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA