RESUMEN
In this Letter, an omni-directional reflector (ODR) with a thin hybrid dielectric layer (hybrid-ODR) is proposed to enhance the light extraction efficiency (LEE) for inclined-sidewall-shaped AlGaN-based deep ultraviolet light-emitting diode (DUV LED) by inserting a thin diamond with high refraction index into a conventional Al/Al2O3-based ODR. The three-dimensional finite-difference time-domain (3D FDTD) simulation results show that the LEE of TM-polarized light for the DUV LED with hybrid-ODR is enhanced by 18.5% compared with Al/Al2O3-based ODR. It is because the diamond can transform the evanescent wave in Al2O3 into the propagating light wave in diamond, thereby preventing effective excitation of the surface plasmon polariton (SPP) on the surface of the metal Al. Moreover, the Brewster's angle effect causes the TM-polarized light in diamond to propagate effectively into AlGaN. Furthermore, decreasing the total thickness of the dielectric layer also improves the scattering effect of the inclined sidewall. However, the utilization of hybrid-ODR results in a slight reduction in the LEE for transverse electric (TE) polarized light because the light is confined to the diamond layer and eventually absorbed by the metal Al.
RESUMEN
In this work, we hybridize an air cavity reflector and a nanopatterned sapphire substrate (NPSS) for making an inclined-sidewall-shaped deep ultraviolet micro light-emitting diode (DUV micro-LED) array to enhance the light extraction efficiency (LEE). A cost-effective hybrid photolithography process involving positive and negative photoresist (PR) is explored to fabricate air-cavity reflectors. The experimental results demonstrate a 9.88% increase in the optical power for the DUV micro-LED array with a bottom air-cavity reflector when compared with the conventional DUV micro-LED array with only a sidewall metal reflector. The bottom air-cavity reflector significantly contributes to the reduction of the light absorption and provides more escape paths for light, which in turn increases the LEE. Our investigations also report that such a designed air-cavity reflector exhibits a more pronounced impact on small-size micro-LED arrays, because more photons can propagate into escape cones by experiencing fewer scattering events from the air-cavity structure. Furthermore, the NPSS can enlarge the escape cone and serve as scattering centers to eliminate the waveguiding effect, which further enables the improved LEE for the DUV micro-LED array with an air-cavity reflector.
RESUMEN
It is known that light extraction efficiency (LEE) for AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) can be enhanced by using an inclined sidewall of mesa. However, the reported optimal inclined angles are different. In this work, to explore the origin for enhancing the LEE of DUV LED by using inclined sidewalls, we investigate the effect of an inclined sidewall angle on the LEE for AlGaN-based DUV LEDs with different mesa diameters by using ray tracing. It is found that when compared to large-size DUV LEDs with inclined sidewall, the LEE of small-size DUV LEDs with inclined sidewall is enhanced from both the bottom and side surfaces due to the reduced scattering length and material absorption. Additionally, the optimal inclined sidewall angle is recommended within the range of 25°-65°, and the optimal angle for DUV LEDs decreases as the chip size increases. It can be attributed to the fact that there are two scattering mechanisms for the inclined sidewall. For smaller chip sizes, most of the light is directly scattered into escape cones by the inclined sidewall, resulting in a larger optimal angle. For larger chip sizes, the light firstly experiences total internal reflections by the out-light plane and then is scattered into escape cones by the inclined sidewalls, leading to a smaller optimal angle.
RESUMEN
In this Letter, beveled mesas for 30 × 30â µm2 GaN-based micro-light-emitting diodes (µLEDs) with different inclination angles are designed, fabricated, and measured. We find that µLED with a mesa inclination angle of 28° has the lowest internal quantum efficiency (IQE) and the highest injection current density at which the peak IQE is obtained. This is due to the increased quantum confined Stark effect (QCSE) at the mesa edge. The increased QCSE results from the strong electric field coupling effect. Instead of radiative recombination, more nonradiative recombination and leakage current will be generated in the sidewall regions. Besides, the smallest angle (28°) also produces the lowest light extraction efficiency (LEE), which arises from the optical loss caused by the sidewall reflection at the beveled surface sides. Therefore, the inclination angle for the beveled mesa has to be increased to 52° and 61° by using Ni and SiO2 as hard masks, respectively. Experimental and numerical results show that the external quantum efficiency (EQE) and the optical power can be enhanced for the fabricated devices. Meanwhile, the reduced surface recombination rate also decreases the leakage current.
RESUMEN
In this paper, by using advanced numerical models, we investigate the impact of the AlN/GaN distributed Bragg reflector (DBR) and AlInN/GaN DBR on stimulated radiative recombination for GaN-based vertical-cavity-surface-emitting lasers (VCSELs). According to our results, when compared with the VCSEL with AlN/GaN DBR, we find that the VCSEL with AlInN/GaN DBR decreases the polarization-induced electric field in the active region, and this helps to increase the electron-hole radiative recombination. However, we also find that the AlInN/GaN DBR has a reduced reflectivity when compared with the AlN/GaN DBR with the same number of pairs. Furthermore, this paper suggests that more pairs of AlInN/GaN DBR will be set, which helps to even further increase the laser power. Hence, the 3 dB frequency can be increased for the proposed device. In spite of the increased laser power, the smaller thermal conductivity for AlInN than AlN results in the earlier thermal droop in the laser power for the proposed VCSEL.
RESUMEN
In this work, by using three-dimensional finite-difference time-domain (3D FDTD) method, the effect of conventional nano-patterned sapphire substrate (NPSS) on the optical crosstalk and the light extraction efficiency (LEE) for InGaN/GaN-based flip-chip micro light-emitting diodes (µ-LEDs) are systematically studied. We find that the conventional NPSS is not suitable for µ-LEDs. It is because the inclined mesa sidewall for µ-LEDs possesses a good scattering effect for µ-LEDs, but the introduced conventional NPSS causes part of the light be off escape cone between sapphire and air and become the guided light. To suppress the guided light and improve the optical crosstalk, a thick air layer between the n-GaN layer and the sapphire substrate can be used as a light filter to prevent the guided light from propagating into the sapphire. However, in reality, it is challenging to make the aforementioned air layer from point of fabrication view. Therefore, we propose the air-cavity patterned sapphire substrate (AC-PSS) as the light filter. Our results show that the crosstalk ratio can be decreased to the value even lower than 10%. The LEE can also be enhanced simultaneously due to combination effects of the filtering effect of the AC-PSS and the scattering effect of the inclined mesa sidewall.
RESUMEN
Low light extraction efficiency (LEE), high forward voltage and severe self-heating effect greatly affect the performance for AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs). In this work, surface-textured Ga-face n-AlGaN is fabricated low-costly using self-assembled SiO2 nanosphere as hard mask. The experimental results manifest that when compared with conventional DUV LEDs, the optical power, the forward voltage and the thermal characteristics for the DUV LEDs with surface-textured Ga-face n-AlGaN are improved obviously. It is because the surface-textured Ga-face n-AlGaN between mesa and the n-electrode can be used as the scattering center for trapped light, and this leads to the enhanced LEE. Furthermore, thanks to the surface-textured n-AlGaN under the n-electrode, the n-type ohmic contact area can be increased effectively. Therefore, the n-type ohmic contact resistance can be reduced and the better heat dissipation can be attained for the proposed flip-chip DUV LED.
RESUMEN
In this report, the impact of different mesa designs on the optical and electrical characteristics for GaN-based micro-light emitting diodes (µLEDs) has been systematically and numerically investigated by using TCAD simulation tools. Our results show that an enhanced light extraction efficiency can be obtained by using beveled mesas. The inclined mesa angles can more effectively reflect the photons to the substrate, and this helps to extract the photons to free air for flip-chip µLEDs. However, it is found that the current injection is influenced by inclination angles for the investigated µLEDs, such that the beveled mesas make stronger charge-coupling effect and increase the electric field magnitude in the multiple quantum wells at the mesa edge, so that the carriers cannot be effective consumed by radiative recombination. As a result, this gives rise to stronger defect-induced nonradiative recombination at mesa surfaces. Therefore, there are tradeoffs between the LEEs and IQEs when changing the beveled angle, to maximize external quantum efficiency for GaN-based µLEDs, the beveled mesa angle shall be carefully designed and optimized.
RESUMEN
In this report, a p+-GaN/SiO2/Ni tunnel junction with a local SiO2 insulation layer is designed to manage the current distribution for commercially structured AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) with a thin p-GaN layer. The experimental and calculated results prove that, besides the increased hole injection at the p+-GaN/SiO2/Ni tunnel junction, the local SiO2 layer produces an in-plane unbalanced energy band in the p-GaN layer for the proposed DUV LEDs, thus modulating the carrier transport paths and increasing the spread of holes. Enhanced optical power is obtained when compared to conventional DUV LEDs. In addition, the influence of the position of the SiO2 insulation layer on the current distribution is also investigated in this work. Placing the SiO2 insulation layer in the middle position of the p+-GaN layer is most helpful for increasing the hole injection efficiency for commercially structured DUV LEDs.
RESUMEN
In this work, we have proposed and fabricated a metal/Ga2O3/GaN hybrid structure metal-semiconductor-metal ultraviolet photodetector with low dark current and high responsivity. The Schottky contact of Ni/Ga2O3 makes the Ga2O3 layer fully depleted. The strong electric field in the Ga2O3 depletion region can push the photo-induced electrons from the Ga2O3 layer into the GaN layer for more efficient carrier transport. Therefore, the hybrid structure simultaneously utilizes the advantage of the absorption to solar-blind ultraviolet light by the Ga2O3 layer and the high electron mobility of the GaN layer. Thus, the dark current and the photocurrent for the proposed device can be greatly improved. As a result, an extremely high photo-to-dark-current ratio of 1.46 × 106 can be achieved. Furthermore, quick rise and fall times of 0.213â s and 0.027â s at the applied bias of 6â V are also obtained, respectively.
RESUMEN
In this work, a 280-nm-wavelength deep-ultraviolet light-emitting diode (DUV LED) with a p+-GaN/SiO2/ITO tunnel junction is fabricated and investigated. Due to the decreased tunnel region width and enhanced electric field intensity in the 1-nm-thick SiO2 layer, the interband tunneling efficiency and the corresponding hole injection efficiency are promoted. Therefore, the external quantum efficiency (EQE) for the proposed device is increased when compared with a traditional DUV LED. In addition, an improved current spreading effect is observed for our proposed device. As a result, improved wall-plug efficiency (WPE) is obtained owing to the increased optical power and decreased forward operating voltage. Meanwhile, the enhanced electric field intensity in the SiO2 layer reduces the voltage drop in the p-n junction region for the proposed device, and thus the leakage current is reduced.
RESUMEN
In this report, we investigate the impact of a thin p-GaN layer on the efficiency for AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs). According to our results, the light extraction efficiency (LEE) becomes higher with the decrease of the p-GaN layer thickness, which can be ascribed to the decreased absorption of DUV emission by the thin p-GaN layer. Moreover, we also find that the variation trend of external quantum efficiency (EQE) is consistent with that of LEE. Therefore, we can speculate that high-efficiency DUV LEDs can be achieved by using thin p-GaN layer to increase the LEE. However, a thin p-GaN layer can also cause severe current crowding effect and the internal quantum efficiency (IQE) will be correspondingly reduced, which will restrict the improvement of EQE. In this work, we find that the adoption of a current spreading layer for such DUV LED with very thin p-GaN layer can facilitate the current spreading effect. For the purpose of demonstration, we then utilize a well-known p-AlGaN/n-AlGaN/p-AlGaN (PNP-AlGaN) structured current spreading layer. Our experimental and numerical results show that, as long as the current crowding effect can be suppressed, the DUV LED with thin p-GaN layer can significantly increase the EQE and the optical power thanks to the enhanced LEE.
RESUMEN
It is known that light extraction efficiency (LEE) for AlGaN-based deep ultraviolet light-emitting didoes (DUV LEDs) can be enhanced by using truncated cone arrays with inclined sidewalls. In this work, the air-cavity-shaped inclined sidewall is applied and the p-GaN layer at the top of the truncated cone is laterally over-etched so that more light escape paths are generated for AlGaN-based DUV LEDs. The experimental results manifest that when compared with DUV LEDs only having the air-cavity-shaped inclined sidewall, the optical power for the DUV LEDs with laterally over-etched p-GaN at the top of the truncated cone is enhanced by 30% without sacrificing the forward bias. It is because the over-etched p-GaN makes little effect on the carrier injection and does not affect the ohmic contact resistance. Moreover, the simulation results show that the truncated cone with laterally over-etched p-GaN layer can enhance the LEE because the reduced p-GaN area can suppress the optical absorption and supplies additional light paths for DUV photos. Then, more light will be reflected into escape cones at the sapphire side.
RESUMEN
In this work, we propose adopting step-type quantum wells to improve the external quantum efficiency for GaN-based yellow micro light-emitting diodes. The step-type quantum well is separated into two parts with slightly different InN compositions. The proposed quantum well structure can partially reduce the polarization mismatch between quantum barriers and quantum wells, which increases the overlap for electron and hole wave functions without affecting the emission wavelength. Another advantage is that the slightly decreased InN composition in the quantum well helps to decrease the valence band barrier height for holes. For this reason, the hole injection capability is improved. More importantly, we also find that step-type quantum wells can make holes spread less to the mesa edges, thus suppressing the surface nonradiative recombination and decreasing the leakage current.
RESUMEN
Traditional GaN-based metal-semiconductor-metal (MSM) photodetector (PD) features a symmetric structure, and thus a poor lateral carrier transport can be encountered, which can decrease the photocurrent and responsivity. To improve its photoelectric performance, we propose GaN-based MSM photodetectors with an AlGaN polarization layer structure on the GaN absorption layer. By using the AlGaN polarization layer, the electric field in the metal/GaN Schottky junction can be replaced by the electric fields in the metal/AlGaN Schottky junction and the AlGaN/GaN heterojunction. The increased polarization electric field can enhance the transport for the photogenerated carriers. More importantly, such polarization electric field cannot be easily screened by free carriers, thus showing the detectability for the even stronger illumination intensity. Moreover, we also conduct in-depth parametric investigations into the impact of different designs on the photocurrent and the responsivity. Hence, device physics regarding such proposed MSM PDs has been summarized.
RESUMEN
In this work, a 280 nm AlGaN-based deep ultraviolet light-emitting diode (DUV LED) with a metal-insulator-semiconductor (MIS) structured n-electrode is fabricated and studied. The SiO2 insulator layer is adopted to form the MIS structure by using an atomic layer deposition system. After adopting the MIS-structured n-electrode, the SiO2 intermediate layer enables electron affinity for the contact metal to be higher than the conduction band of the n-AlGaN layer, which favors the electrons to be injected into the n-AlGaN layer by intraband tunneling rather than thermionic emission. Moreover, the thin SiO2 insulator can share the applied bias, which makes the n-AlGaN layer surface less depleted and thus further facilitates the electron injection. The improved electron injection capability at the metal-semiconductor interface helps reduce the contact resistance and increase electron concentration in the active region, which then improves external quantum efficiency and wall-plug efficiency for the proposed DUV LED.
RESUMEN
In this work, we propose and demonstrate the concept of remote reflections, which help to multiply the photon propagations for increasing the light extraction efficiency (LEE) for both transverse magnetic (TM)- and transverse electric (TE)-polarized light. The remote reflection is enabled by using a remote-metal-reflector-based air cavity extractor. According to our study, the remote reflections can significantly avoid the optical absorption when compared with the conventional inclined-sidewall-shaped deep-ultraviolet light-emitting diodes with the metal Al reflector on the inclined sidewalls. As a result, the optical power for our proposed devices has been significantly enhanced by 55% experimentally. Numerical simulations further reveal that the remote metal reflector not only favors more total internal refection on the inclined sidewalls but also supports additional light escaped channels for enhancing the LEE.
RESUMEN
In this report, we locally modulate the doping type in the n-AlGaN layer by proposing n-AlGaN/p-AlGaN/n-AlGaN (NPN-AlGaN)-structured current spreading layer for AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs). After inserting a thin p-AlGaN layer into the n-AlGaN electron supplier layer, a conduction band barrier can be generated in the n-type electron supplier layer, which enables the modulation of the lateral current distribution in the p-type hole supplier layer for DUV LEDs. Additionally, according to our studies, the Mg doping concentration, the thickness, the AlN composition for the p-AlGaN insertion layer and the NPN-AlGaN junction number are found to have a great influence on the current spreading effect. A properly designed NPN-AlGaN current spreading layer can improve the optical output power, external quantum efficiency (EQE), and the wall-plug efficiency (WPE) for DUV LEDs.
RESUMEN
For the [0001] oriented AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs), the holes in the p-type electron blocking layer (p-EBL) are depleted due to the polarization induced positive sheet charges at the last quantum barrier (LQB)/p-EBL interface. The hole depletion effect significantly reduces the hole injection capability across the p-EBL. In this work, we propose inserting a thin AlN layer between the LQB and the p-EBL, which can generate the hole accumulation at the AlN/p-EBL interface. Meanwhile, the holes can obtain the energy when traveling from the p-EBL into the multiple quantum wells (MQWs) by intraband tunneling through the thin AlN layer. As a result, the hole injection and the external quantum efficiency (EQE) have been remarkably enhanced. Moreover, we point out that the thick AlN insertion layer can further generate the hole accumulation in the p-EBL and increase the hole energy which helps to increase the hole injection. We also prove that the intraband tunneling for holes across the thick AlN insertion layer is facilitated by using the optimized structure.
RESUMEN
In this work, the size-dependent effect for InGaN/GaN-based blue micro-light emitting diodes (µLEDs) is numerically investigated. Our results show that the external quantum efficiency (EQE) and the optical power density drop drastically as the device size decreases when sidewall defects are induced. The observations are owing to the higher surface-to-volume ratio for small µLEDs, which makes the Shockley-Read-Hall (SRH) non-radiative recombination at the sidewall defects not negligible. The sidewall defects also severely affect the injection capability for electrons and holes, such that the electrons and holes are captured by sidewall defects for the SRH recombination. Thus, the poor carrier injection shall be deemed as a challenge for achieving high-brightness µLEDs. Our studies also indicate that the sidewall defects form current leakage channels, and this is reflected by the current density-voltage characteristics. However, the improved current spreading effect can be obtained when the chip size decreases. The better current spreading effect takes account for the reduced forward voltage.