Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1435765, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040905

RESUMEN

Introduction: Fengxiangxing Huairang Daqu (FHD) is one of the major types of Daqu in China. However, the relationship between the microbial community structure at different stages, the changes in the sensory characteristics, fermentation characteristics, volatiles, the most critical process point, and the quality formation of FHD is not clear. Methods: Based on microscopic characterization, PacBio SMRT sequencing, and HS-SPME-GC-MS volatile metabolite analysis revealed the relationship between FHD quality formation and the dynamics of Qupi. Results: The results showed that the 12th day of the culture was the most critical process point, highlighting the most significant differences in microbial community structure, sensory characteristics, fermentation characteristics, and flavor substances. Bacillus licheniformis (43.25%), Saccharopolyspora rectivirgula (35.05%), Thermoascus aurantiacus (76.51%), Aspergillus amstelodami (10.81%), and Saccharomycopsis fibuligera (8.88%) were the dominant species in FHD. S. fibuligera, A. amstelodami, and T. aurantiacus were associated with the snow-white color of the FHD epidermis, the yellow color of the interior, and the gray-white color, respectively. The abundance of T. aurantiacus, A. amstelodami, B. licheniformis, and S. rectivirgula was positively associated with the esterifying power and liquefying power of FHD. The abundance of T. aurantiacus and A. amstelodami was positively correlated with the saccharifying power of FHD. The abundance of S. fibuligera was positively related to the fermenting power of FHD. A total of 248 volatiles were detected in Qupi, mainly including alcohols, esters, aldehydes, and ketones. Of them, eleven volatiles had a significant effect on the flavor of Qupi, such as 1-butanol-3-methyl-, hydrazinecarboxamide, ethanol, phenylethyl alcohol, ethyl acetate, 2-octanone, 1-octen-3-ol, formic acid-hexyl ester, (E)-2-octen-1-ol, ethyl hexanoate, and 2(3H)-furanone-dihydro-5-pentyl-. The abundance of B. licheniformis, S. rectivirgula, T. aurantiacus, and S. fibuligera was positively correlated with the alcohols, aromatic compounds, and phenols in FHD. The abundance of S. fibuligera was positively correlated with the acids, esters, and hydrocarbons in FHD. Discussion: These results indicate important theoretical basis and technical support for controllable adjustment of FHD microbial community structure, stable control of FHD quality, and precise, effective, and large-scale guidance of FHD production.

2.
RSC Adv ; 12(12): 6951-6957, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35424708

RESUMEN

Three anionic metal-organic frameworks (MOFs) {[Zn3(BTEC)2(H2O)(4-BCBPY)]·(H2O)} n (1-3) (BTEC4- = 1,2,4,5-benzenetetracarboxylic acid anion, 4-BCBPY2+ = 1,1'-bis(4-cyanobenzyl)-4,4'-bipyridinium dication) were synthesized in the reaction of 1,2,4,5-benzenetetracarboxylic acid with different metal salts such as ZnNO3, ZnCl2, and ZnSO4, under solvothermal conditions in the presence of 1,1'-bis(4-cyanobenzyl)-4,4'-bipyridinium chloride. Single crystal X-ray diffraction analysis shows that compounds 1, 2 and 3 have MOF structures based on binuclear metal building units, which are connected by two protonated BTEC4- ligands and three zinc ions, and the viologen cation 4-BCBPY2+ is located in the channel to achieve charge balance. Compounds 1, 2 and 3 have good photosensitivity, respond to sunlight, UV light and blue ray, and turn blue. The D-A distance and π-π stacking distance of the discolored samples (1P, 2P and 3P) changed. In addition, the three compounds showed visible color changes to ammonia vapor, rapidly changing from white to blue. At the same time, the three compounds exhibited fluorescence quenching to ammonia vapor and Cr2O7 2-. It is further proved that compounds 1, 2 and 3 are fluorescent sensors with a low detection limit (for Cr2O7 2-: 10-5 M) and high sensitivity for ammonia vapor and Cr2O7 2-. It was found that photochromic behavior, ammonia sensing properties can be tuned by the nature of metal salts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA