Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Water Res ; 267: 122472, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39305525

RESUMEN

This study examined the influence of water periods on river nitrogen cycling by analysing nitrogen functional genes and bacterial communities in the Qingshui River, an upstream tributary of the Yellow River in China. Nitrate nitrogen predominated as inorganic nitrogen during the low-flow seasons, whereas salinity was highest during the high-flow seasons. Overall, the functional gene abundance increased with decreasing water volume, and nitrogen concentrations were determined by various specific gene groups. The relative abundance of bacteria carrying these genes varied significantly across water periods. The abundance of Pseudomona, Hydrogenophaga (carrying narGHI and nirB genes), and Flavobacterium (carrying nirK, norBC, and nosZ genes) significantly increased during the low-flow seasons. Nitrogen transformation bacteria exhibited both symbiotic and mutualistic relationships. Microbial network nodes and sizes decreased with decreasing water volume, whereas modularity increased. Additionally, the water period affected the functional microbial community structure by influencing specific environmental factors. Among them, SO42- primarily determined the denitrification, dissimilatory nitrate reduction to ammonium, and assimilatory nitrate reduction to ammonium communities, whereas NO2--N and Mg2+ were the main driving factors for the nitrogen-fixing and nitrifying communities, respectively. These findings have substantial implications for better understanding the reduction in river nitrogen loads in arid and semi-arid regions during different water periods.

2.
Environ Sci Technol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39322975

RESUMEN

Iodine derived from edible seaweed significantly enhances the formation of iodinated disinfection byproducts (I-DBPs) during household cooking. Reactions of chlorine with monoiodotyrosine (MIT) and diiodotyrosine (DIT) derived from seaweed were investigated. Species-specific second-order rate constants (25 °C) for the reaction of hypochlorous acid with neutral and anionic MIT were calculated to be 23.87 ± 5.01 and 634.65 ± 75.70 M-1 s-1, respectively, while the corresponding rate constants for that with neutral and anionic DIT were determined to be 12.51 ± 19.67 and 199.12 ± 8.64 M-1 s-1, respectively. Increasing temperature facilitated the reaction of chlorine with MIT and DIT. Based on the identification of 59 transformation products/DBPs from iodotyrosines by HPLC/Q-Orbitrap HRMS, three dominant reaction pathways were proposed. Thermodynamic results of computational modeling using density functional theory revealed that halogen exchange reaction follows a stepwise addition-elimination pathway. Among these DBPs, 3,5-diiodo-4-hydroxy-benzaldehyde and 3,5-diiodo-4-hydroxy-benzacetonitrle exhibited high toxic risk. During chlorination of MIT and DIT, iodinated trihalomethanes and haloacetic acids became dominant species at common cooking temperature (80 °C). These results provide insight into the mechanisms of halogen exchange reaction and imply important implications for the toxic risk associated with the exposure of I-DBPs from household cooking with iodine-containing food.

3.
J Hazard Mater ; 480: 135871, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293168

RESUMEN

During wet weather, sewer overflow pollution can pose a serious threat to surface water. In order to reduce the impact of overflow discharge on receiving waters, ferric chloride (Fe(Ⅲ))/potassium ferrate (Fe(Ⅵ))/polyacrylamide (PAM) coagulation (Fe(Ⅲ)/Fe(Ⅵ)/PAM) combined with sodium hypochlorite (NaClO) oxidation was proposed. Different combinations were constructed, including pre-oxidation coagulation (NaClO-Fe(Ⅲ)/Fe(Ⅵ)/PAM), pre-coagulation oxidation (Fe(Ⅲ)/Fe(Ⅵ)/PAM-NaClO), and synchronous coagulation oxidation (NaClO+Fe(Ⅲ)/Fe(Ⅵ)/PAM). The combined processes achieved efficient removal of conventional contaminants, and the produced byproducts were controlled, especially in the NaClO-Fe(Ⅲ)/Fe(Ⅵ)/PAM. The obvious discrepancy in the sulfamethoxazole (SMX) removal was observed in different processes. NaClO affected the distribution of hydrolyzed iron species, and the proportion of active iron in the NaClO-Fe(Ⅲ)/Fe(Ⅵ)/PAM significantly increased. More complexation sites were generated in the NaClO-Fe(Ⅲ)/Fe(Ⅵ)/PAM, which can complex with the coagulant and then effectively transfer to the flocs. The composition of the flocs further confirmed the differences in coagulation characteristics. The generated·OH played a crucial role in SMX removal in the NaClO+Fe(Ⅲ)/Fe(Ⅵ)/PAM, and ClO·was responsible for partial removal of ammonia nitrogen (NH4+-N). The contribution of high-valent iron species was confirmed, and the introduction of NaClO promoted the generation of iron species. This study may provide an ideal for overflow treatment to improve the urban water environment.

4.
Environ Sci Technol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255388

RESUMEN

Toxicity studies of water disinfection byproducts (DBPs) typically assume additive interactions. Coupling results from both the bottom-up cytotoxicity interaction approach by selecting six common DBPs and the top-down cytotoxicity fractionating the disinfected secondary effluent containing a much broader DBP selection, we demonstrated a novel effect of clear, nonadditive cytotoxicity at low chemical concentrations regardless of the number of DBP types involved. We revealed that the cytotoxicity interactions were influenced by the chemical's type, concentration factor, and mixing ratio. For the bottom-up approach, the average combination indices (CIs) were 1.61 (chloracetamide + chloroacetonitrile, antagonism), 1.03 (bromoacetamide+bromoacetonitrile, near additivity), and 0.69 (iodoacetamide + iodoacetonitrile, synergism) across the DBPs' concentration range of 10-4-10-7 M. These cytotoxicity interactions also varied with the components' mixing ratios. For the top-down approach, we obtained two fractions of DBP mixtures from the disinfected secondary effluent using solvents of different polarities. The effect of the concentration on CI values was significant, with a maximum 43.1% relative deviation in CI from LC5 to LC95. The average CI values across the sample concentration range of 1-50 × (concentration factor) varied from 1.68 (antagonism) to 0.89 (slight synergism) as the ratio of mixture A increased. These results call for further research in prioritizing the forcing DBPs in mixtures.

5.
Environ Sci Technol ; 58(35): 15807-15815, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39163399

RESUMEN

Concerns over toxic nitrogenous disinfection byproducts (N-DBPs) necessitate identifying their precursors in source water. Natural organic amino compounds are known precursors to N-DBPs. Three Suwannee River (SR) standard reference materials (SRMs), humic acids (HA), fulvic acids (FA), and natural organic matter (NOM), are commonly used to study DBP formation, but the chemical makeup of amino compounds in SRSRMs remains largely unknown. To address this, we combined stable hydrogen/deuterium isotope labeling, HDPairFinder bioinformatics, and nontargeted high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) to characterize these compounds in SRSRMs. This method classifies reactive amines, provides accurate masses and MS/MS spectra, and quantifies intensities. We identified 2707 high-quality features with primary and/or secondary amines in SRSRMs and 75% of them having an m/z < 300. Across all three SRSRMs, 327 amino features were detected, while 856, 794, and 200 unique features were found in SRNOM, SRHA, and SRFA, respectively. In North Saskatchewan River (NSR) samples, a total of 6449 amino features were detected, 818 of them matched those in SRSRMs, and 87% of them were different between the two rivers. Using chemical standards, we confirmed 10 compounds and tentatively identified 5 more. This study highlights similarities and differences in reactive N-precursors in SRSRMs and local river water, enhancing the understanding of geo-differences in reactive N-precursors in different source waters.


Asunto(s)
Ríos , Ríos/química , Contaminantes Químicos del Agua/análisis , Compuestos de Nitrógeno/análisis , Desinfección , Benzopiranos
6.
Water Res ; 264: 122205, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39116612

RESUMEN

The severely low influent chemical oxygen demand (COD) concentration at wastewater treatment plants (WWTPs) has become a critical issue. A key factor is the excessive biodegradation of organic matter by microbial communities within sewer systems. Intense disinfection commonly adopted for medical wastewater leads to abundant residual chlorine entering sewers, likely causing significant changes in microbial communities and sewage quality in sewers, yet our understanding is limited. Through long-term sewer simulation batch tests, this study revealed the response mechanism of microbial communities to residual chlorine and its impact on organic matter concentration in sewage. Under residual chlorine stress, microbial community structure rapidly changed, and more complex microbial interactions were observed. Besides, pathways related to stress response such as two-component system were significantly enriched; pathways related to energy metabolism (such as carbon fixation in prokaryotes and citrate cycle) in microbial communities were inhibited, and carbon metabolism shifted from the Embden-Meyerhof pathway to the pentose phosphate pathway to enhance cellular reducing power, reduce oxidative stress, and consequently decrease organic matter degradation. Therefore, compared to sewers with normal disinfection, concentrations of COD and dissolved organic carbon in sewage under chlorine stress increased by 12.6 % and 7.4 %, respectively. Besides, the decay and transformation of residual chlorine in sewers were explored. These findings suggest a new approach to medical wastewater discharge management: placing the medical wastewater outlet at the upstream in sewer systems, which ensures that residual chlorine consumption reaches maximum during long-distance transportation, mitigating its harmful effects on WWTPs, and increases the influent organic matter concentration, thereby reducing the need for additional carbon sources.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno , Cloro , Desinfección
7.
Environ Sci Technol ; 58(33): 14864-14874, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047190

RESUMEN

Widely used antioxidants can enter the environment via urban stormwater systems and form disinfection byproducts (DBPs) during chlorination in downstream drinking water processes. Herein, we comprehensively investigated the occurrence of 39 antioxidants from stormwater runoff to surface water. After a storm event, the concentrations of the antioxidants in surface water increased by 1.4-fold from 102-110 ng/L to 128-139 ng/L. Widespread antioxidants during the stormwater event could transform into toxic DBPs during disinfection. Moreover, the yields of trihalomethanes, haloacetaldehydes, haloacetonitriles (HANs), and halonitromethanes during the chlorination of widely used antioxidants considerably increased with an increasing chlorine dose and contact time. Specifically, the yields of dichloroacetonitrile during the chlorination of diphenylamine (DPA) and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) were higher than those of most reported amino acid precursors, indicating that DPA and 6PPD might be important precursors of HANs. Exploring the intermediates using GC × GC-time-of-flight high-resolution mass spectrometry helped reveal potential pathways from DPA to HANs, whose formation could be attributed to the intermediate carbazole and indole moieties detected in this study. This study provides insights into the transport and transformation of commonly used antioxidants in a water environment and during water treatment processes, highlighting the potential risks of anthropogenic pollutants from a DBP perspective.


Asunto(s)
Antioxidantes , Desinfección , Contaminantes Químicos del Agua/química , Purificación del Agua , Halogenación
8.
Environ Sci Technol ; 58(24): 10776-10785, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838101

RESUMEN

Rivers have been recognized as the primary conveyors of microplastics to the oceans, and seaward transport flux of riverine microplastics is an issue of global attention. However, there is a significant discrepancy in how microplastic concentration is expressed in field occurrence investigations (number concentration) and in mass flux (mass concentration). Of urgent need is to establish efficient conversion models to correlate these two important paradigms. Here, we first established an abundant environmental microplastic dataset and then employed a deep neural residual network (ResNet50) to successfully separate microplastics into fiber, fragment, and pellet shapes with 92.67% accuracy. We also used the circularity (C) parameter to represent the surface shape alteration of pellet-shaped microplastics, which always have a more uneven surface than other shapes. Furthermore, we added thickness information to two-dimensional images, which has been ignored by most prior research because labor-intensive processes were required. Eventually, a set of accurate models for microplastic mass conversion was developed, with absolute estimation errors of 7.1, 3.1, 0.2, and 0.9% for pellet (0.50 ≤ C < 0.75), pellet (0.75 ≤ C ≤ 1.00), fiber, and fragment microplastics, respectively; environmental samples have validated that this set is significantly faster (saves ∼2 h/100 MPs) and less biased (7-fold lower estimation errors) compared to previous empirical models.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Ríos/química
9.
J Hazard Mater ; 476: 134983, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38941836

RESUMEN

Nitrogenous disinfection byproducts (N-DBPs) in water are carcinogenic, teratogenic, and mutagenic. In this work, we developed a biomimetic reduction approach based on the cysteine thiol that destructed the highly toxic, select nitrogenous haloacetamides (HAMs) and haloacetonitriles (HANs) while effectively controlling the cytotoxicity of the degradation products to serve as a basis for further technological applications (e.g. immobilized contact bed for terminal users). Mechanisms on toxicity control were elucidated. Results showed the degradation and cytotoxicity control of HAMs as more efficient than that of the HANs. The cytotoxicity of the chlorinated, brominated, and iodinated HAMs and HANs was reduced to 25 %- 0.25 % of the original after biomimetic reduction using a reasonable concentration ratio. Through a combination of thiol-specific reactivity, dehalogenation, and quantitative structure-activity relationship analyses, the major toxicity control mechanisms were found to be the reductive dehalogenation of the N-DBPs. The halogenated functional groups on the N-DBPs had a more pronounced effect than the amide and nitrile groups on the cytotoxicity and detoxification effect. Patterns of toxicity interaction variations with DBPs concentrations were identified to detect possible synergistic cytotoxicity interactions under various combinations of HAMs and HANs in the presence of the cysteine thiol. Results could benefit future N-DBPs control efforts.


Asunto(s)
Desinfección , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Animales , Desinfectantes/toxicidad , Desinfectantes/química , Biomimética , Supervivencia Celular/efectos de los fármacos , Purificación del Agua/métodos , Acetamidas/toxicidad , Acetamidas/química , Cisteína/química , Compuestos de Sulfhidrilo/química , Halogenación
10.
Water Res ; 261: 121931, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38924952

RESUMEN

The ecological risks posed by perfluoroalkyl acids (PFAAs) to the aquatic environment have recently been of great concern. However, little information was available on the impact of PFAAs on antibiotic resistance genes (ARGs) profiles. In this study, the receiving river of the largest fluoropolymer production facility in China was selected to investigate the effects of PFAAs on ARGs profiles. The highest PFAAs concentration for water samples near the industrial effluent discharge point was 310.9 µg/L, which was thousands times of higher than the average concentration collected at upstream sites. Perfluorooctanoic acid accounted for more than 67.2 % of ∑PFAAs concentration in water samples collected at the downstream sites, followed by perfluorohexanoic acid (3.6 %-15.9 %). 145 ARG subtypes including high-risk ARGs were detected by metagenomic technology. The results indicated that the discharge of PFAA-containing effluents had a significant impact on the abundance and diversity of ARGs in receiving waters, and PFAAs and water quality parameters (e.g., pH, NH3N, CODMn, TP) could largely affect ARG profiles. Specifically, short-chain PFAAs had similar impacts on ARG profiles compared to the restricted long-chain PFAAs. This study confirmed the potential effects of PFAAs on ARGs in aquatic environment and provided more insights into the ecological risk raised by PFAAs.


Asunto(s)
Farmacorresistencia Microbiana , Fluorocarburos , Metagenómica , Contaminantes Químicos del Agua , Farmacorresistencia Microbiana/genética , China , Monitoreo del Ambiente , Ríos/microbiología , Ríos/química
11.
Water Res ; 258: 121793, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38788525

RESUMEN

Urban drainage systems are significant contributors to the issue of black-odorous water bodies. The current application of stormwater pipe inspection technologies faces substantial limitations, especially in industrial areas with diverse wastewater. This study introduced an innovative approach using excitation-emission matrix (EEM) fluorescence spectroscopy for rapid and accurate diagnosis, providing a new perspective for diagnosing illicit connections. In single wastewater-type areas like residential zones, the method achieved a remarkable 91.5 % accuracy solely through spectra observation and fluorescence peak intensity comparison, outperforming conventional NH3-N-based techniques, which reached an accuracy of only 68.1 %. For regions with complex wastewater scenarios, after EEM subtraction, the residual spectra can be roughly categorized into four distinctive categories based on characteristics. This provides a preliminary assessment and helps in initially identifying the types and sources of inflowing wastewater. Furthermore, the least squares (LS) method refines diagnosis results, offering calculated coefficients reflecting the probability and severity of suspected wastewater intrusion. Simulation experiments and field sample analyses validated the feasibility and accuracy of the EEM-based method, highlighting its advantages for diagnosing illicit connections in both single and mixed wastewater scenarios. The results can significantly narrow down the investigation scope and enhance the confirmation of wastewater sources, exhibiting promising application prospects.


Asunto(s)
Monitoreo del Ambiente , Espectrometría de Fluorescencia , Aguas Residuales , Espectrometría de Fluorescencia/métodos , Monitoreo del Ambiente/métodos , Ciudades , Lluvia
12.
Water Res ; 253: 121298, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401470

RESUMEN

As an important class of disinfection byproducts (DBPs) of emerging concern, haloacetaldehydes (HALs) undergo degradation and transformation under environmentally relevant conditions. In this study, the stability of chlorinated and brominated HALs was investigated at different pHs and water temperatures. Results indicated that the degradation of HALs followed second-order kinetics. Surprisingly, rapid degradation of Br-HALs at elevated temperature was newly discovered in this study. At 50 °C and pH 7.5, over 90 % of TBAL degraded in 8 min, while the degradation of TCAL was ∼1 %. Moreover, increasing pH also facilitated the degradation of HALs and the alkaline degradation rate constants ( [Formula: see text] ) were found to be 7-9 orders of magnitude higher than their neutral degradation rate constants ( [Formula: see text] ). Under conditions relevant to environment and DBP measurement, HALs mainly degraded to form corresponding trihalomethanes and formate via decarburization pathway, which accounted for 70-93 % of HALs loss. The remaining 7-30 % of HAL loss was attributed to the dehalogenation pathway newly proposed in this study, successfully closing halogen balance during HAL degradation. In addition, a quantitative structure-activity relationship (QSAR) model was established for HAL degradation and the degradation rate constants for three mono-HALs were predicted at different temperature. The kinetic models and reaction rate constants obtained in this study can be used for quantitative predictions of HAL concentrations in drinking water, which is beneficial for monitoring and control of these emerging DBPs. Furthermore, considering the rapid degradation of Br-HALs into corresponding products, the temperature during sample pre-treatment can have a significant impact on DBP analysis.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfectantes/análisis , Temperatura , Purificación del Agua/métodos , Halogenación , Desinfección/métodos , Agua Potable/análisis , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis
13.
Water Res ; 253: 121302, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401474

RESUMEN

With the increasing discharge of wastewater effluent to natural waters, there is an urgent need to achieve both pathogenic microorganism inactivation and the mitigation of disinfection by-products (DBPs) during disinfection. Studies have shown that two-step chlorination, which injected chlorine disinfectant by splitting into two portions, was more effective in inactivating Escherichia coli than one-step chlorination under same total chlorine consumption and contact time. In this study, we observed a substantial reduction in the formation of five classes of CX3R-type DBPs, especially highly toxic haloacetonitriles (HANs), during two-step chlorination of secondary effluent when the mass ratio of chlorine-to-nitrogen exceeded 2. The shift of different chlorine species (free chlorine, monochloramine and organic chloramine) verified the decomposition of organic chloramines into monochloramine during second chlorination stage. Notably, the organic chloramines generated from the low molecular weight (< 1 kDa) fraction of dissolved organic nitrogen in effluent organic matter tended to decompose during the second step chlorination leading to the mitigation of HAN formation. Furthermore, the microbiological analysis showed that two-step chlorinated effluent had a slightly lower ecological impact on surface water compared to one-step chlorination. This work provided more information about the two-step chlorination for secondary effluent, especially in terms of organic chloramine transformation and HAN control.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloraminas , Desinfección , Aguas del Alcantarillado , Halogenación , Cloro/análisis , Peso Molecular , Contaminantes Químicos del Agua/análisis
14.
Water Res ; 253: 121264, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335842

RESUMEN

Quenching is an important step to terminate disinfection during preparation of disinfected water samples for the analysis of disinfection byproducts (DBPs). However, an incomplete quenching might result in continued reactions of residual chlorine, whereas an excessive quenching might decompose target DBPs. Therefore, an adequate quenching to achieve simultaneous disinfection termination and DBP preservation is of particular importance. In this study, the two-stage reaction kinetics of chlorine and three commonly used quenching agents (i.e., ascorbic acid, sodium thiosulfate, and sodium sulfite) were determined. Stopping quenching during the first stage prevented interactions of residual chlorine with natural organic matter. Complete quenching was achieved by minimizing the quenching time for ascorbic acid and sodium sulfite, while limiting the quenching time to less than 3 min for sodium thiosulfate. At the optimized quenching times, the molar ratios (MRs) of quenching agent to chlorine were 1.05, 1.10, and 0.75 for ascorbic acid, sodium sulfite, and sodium thiosulfate, respectively. The destructive effects of the three quenching agents on total organic halogen (TOX) followed the rank order of ascorbic acid (33.7-64.8 %) < sodium sulfite (41.6-72.8 %) < sodium thiosulfate (43.3-73.2 %), and the destructive effects on aliphatic DBPs also followed the rank order of ascorbic acid (29.5-44.5 %) < sodium sulfite (34.9-51.9 %) < sodium thiosulfate (46.9-53.2 %). For total organic chlorine (TOCl) and aliphatic DBPs, the quenching behavior itself had more significant destructive effect than the quenching agent type/dose and quenching time, but for total organic bromine (TOBr), the destructive effect caused by quenching agent type/dose and quenching time was more significant. High-dose, long-duration quenching enhanced the reduction of TOX, but had little effect on aliphatic DBPs. Additionally, the three quenching agents reduced the levels of halophenols (except for tribromophenol), while maintained or increased the levels of tribromophenol, halobenzoic/salicylic acids, and halobenzaldehydes/salicylaldehydes. To achieve adequate quenching for overall DBP analysis in chlorinated water samples, it is recommended to use ascorbic acid at a quenching agent-to-chlorine MR of 1.0 for a quenching time of < 0.5 h.


Asunto(s)
Desinfectantes , Agua Potable , Sulfitos , Tiosulfatos , Contaminantes Químicos del Agua , Purificación del Agua , Agua Potable/análisis , Cloro/análisis , Desinfectantes/análisis , Halógenos/análisis , Desinfección , Cloruros , Ácido Ascórbico/análisis , Contaminantes Químicos del Agua/análisis , Halogenación
15.
Sci Total Environ ; 912: 168989, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38036118

RESUMEN

Stormwater pipes are illicitly connected with sewage in many countries, which means that sewage enters stormwater pipes and the drainage is discharged to surface water without any treatment. Sewage contains more pathogens and highly risky antibiotic resistance genes (ARGs) than surface runoff. Therefore, sewage may alter the microbial and ARG compositions in stormwater pipe drainage, which in turn leads to an increased risk of resistance in surface water. However, the effects of sewage on ARGs in the drainage of stormwater networks have not been systematically studied. This study characterized the microbial and ARG composition of several environmental compartments of a typical stormwater network and quantified their contributions to those in the drainage. This network transported ARGs and microorganisms from sewage, sediments in stormwater pipes, and surface runoff into the drainage and thus into the river. According to metagenomic analysis, multidrug resistance genes were most abundant in all samples and the numbers and relative abundance of ARGs in the drainage collected during wet weather were comparable to that of sewage. The results of SourceTracker showed that the relative contribution of sewage was double that of rainwater and surface runoff in the drainage during wet weather for both microorganisms and ARGs. Desulfovibrio, Azoarcus, and Sulfuritalea were connected with the greatest number of ARGs and were most abundant in the sediments of stormwater pipes. Furthermore, stochastic processes were found to dominate ARG and microbial assembly, as the effects of high hydrodynamic intensity outweighed the effects of environmental filtration and species interactions. The findings of this study can increase our understanding of ARGs in stormwater pipe drainage, a crucial medium linking ARGs in sewage to environmental ARGs.


Asunto(s)
Antibacterianos , Aguas del Alcantarillado , Antibacterianos/farmacología , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Agua
16.
J Environ Sci (China) ; 138: 132-140, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135382

RESUMEN

The dissolved oxygen content in water is an important indicator for assessing the quality of the water environment, and maintaining a certain amount of dissolved oxygen is essential for the healthy development of the ecological environment. When a water body is anoxic, the activity of anaerobic microorganisms increases and organic matter is decomposed to produce a large number of blackening and odorizing substances, resulting in black and odorous water bodies, which is a very common and typical phenomenon in China. Presently, there is still a relatively universal occurrence of illicitly connected stormwater and sewage pipes in the urban drainage pipe network in China, which makes oxygen-consuming substances be directly discharged into rivers through stormwater pipes and consume the dissolved oxygen in the water bodies, resulting in an oxygen deficiency of the water. This induces seasonal or year-round black and stink phenomena in urban rivers. Hence, identifying high oxygen-consuming substances, which lays the foundation for the subsequent removal of oxygen-consuming substances, is essential. Through a series of comparisons of water quality indicators and analysis of organic characteristics, it was found that the oxygen consumption capacity of domestic sewage was higher than that of industrial wastewater in the selected area of this study, and the oxygen-consuming substances of domestic sewage were small molecular amino acids. By comparing 20 conventional free amino acids, it was found that seven of them consumed oxygen easily, and compared with chemical oxygen consumption, biological oxygen consumption was in a leading position.


Asunto(s)
Oxígeno , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Aguas Residuales , Calidad del Agua , Aminoácidos
17.
Water Res ; 246: 120692, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37890262

RESUMEN

The pH of chlorination is an important factor affecting the formation of disinfection byproducts (DBPs). In this study, we discovered that the genotoxicity induced by chlorination can be effectively reduced under alkaline conditions. As the pH of chlorination increased from 6.5 to 8.5, the genotoxicity of investigated waters reduced by ∼30-90 %. By assessing the genotoxicity of the mixture of measured DBPs, it was found that the contribution of measured DBPs to the overall genotoxicity was lower than 5 %, and the significant reduction of genotoxicity was largely associated with unknown DBPs. The result of Pearson's correlation analysis indicated that humified organics and soluble microbial byproducts were likely responsible for the genotoxicity, and their derived genotoxic compounds (i.e., unknown DBPs) tended to decompose during alkaline chlorination. However, the control of genotoxicity by alkaline chlorination was achieved at the expense of promoting trihalomethane (THM) formation. The highest genotoxicity reduction (93 %) was observed for chlorinated granular activated carbon-treated waters, but the formation of THMs was promoted to a level approaching that in untreated waters. The inconsistent trend of overall genotoxicity and THM concentration during alkaline chlorination suggested the inadequacy of THMs as metric for DBP exposure, and considerations should also be given to the toxicity of bulk water in addition to regulated DBPs.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Halogenación , Agua Potable/química , Desinfectantes/análisis , Trihalometanos/química , Contaminantes Químicos del Agua/química , Desinfección , Daño del ADN
18.
Sci Total Environ ; 905: 167445, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37777131

RESUMEN

Total organic halogen (TOX) in drinking water provides a measurement of the overall organic halogenated disinfection by-products (DBPs) formed during disinfection. Yangtze River Delta is one of the regions with the highest population density, the fastest urbanization process, and the most severe water pollution in China. Collecting water samples from full-scale drinking water treatment plants (DWTPs) in this region, this study firstly surveyed TOX occurrence in drinking water. Besides, the correlation of TOX formation potential (TOXFP) and trihalomethane formation potential (THMFP) with general water quality parameters (e.g., dissolved organic carbon [DOC], UV254, and specific ultraviolet absorbance) and the removal efficiencies of TOX precursors by different water treatment processes were also investigated. TOX levels in DWTP effluents (i.e., finished water) ranged from 29 to 165 µg/L (median 67 µg/L), and those in simulated distribution system waters ranged from 101 to 276 µg/L (median 158 µg/L). There were generally higher linear regression coefficient values for raw water (R2 = 0.51-0.88) than for treated water (R2 = 0.33-0.64) in terms of the relationship between DBP formation potentials and general parameters. However, a relatively stronger correlation between THMFP and TOXFP was observed for treated water (R2 = 0.80, p < 0.001) than for raw water (R2 = 0.64, p < 0.001). The overall treatment efficiencies of investigated parameters in DWTPs generally followed the order of UV254 > DOC > TOX precursors > THM precursors. Notably, the overall removal rates of DOC and TOX precursors in summer (averaging 59 % and 54 %, respectively) were obviously higher than those in winter (averaging 39 % and 38 %, respectively), which was assumed to be related to the seasonal variation of bioactivity in sand filter. These results could expand the knowledge of TOX in drinking water, and provide valuable perspectives to water industry and DBP research.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Agua Potable/análisis , Halógenos/análisis , Purificación del Agua/métodos , Desinfección/métodos , Clima , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis , Desinfectantes/análisis
19.
Sci Total Environ ; 903: 166840, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690763

RESUMEN

Coagulation with or without pre-oxidation are important drinking water treatment processes. However, the efficacy of these processes in mitigating water toxicity remains unknown. To further improve drinking water safety, we employed water from the Pearl River Delta region of southern China to investigate a treatment approach consisting of coagulation with or without pre-oxidation to simultaneously modulate health-relevant cytotoxicity to CHO cells, on top of the conventional foci of turbidity and dissolved organic carbon (DOC) during water treatment. Three coagulants (two aluminum-based and one iron-based salts) and three pre-oxidants (ozone, permanganate, and peroxymonosulfate) were studied. For coagulation without pre-oxidation, intermediate coagulant doses and pH reached optimum cytotoxicity to CHO cells, turbidity, and DOC control simultaneously. Introducing oxidants reduced cytotoxicity to CHO cells significantly, enhanced by increasing oxidant concentrations and pre-oxidation duration. The cytotoxicity to CHO cells mitigation capabilities of three pre-oxidants were: ozone > peroxymonosulfate > potassium permanganate. Modulation of water cytotoxicity to CHO cells was mostly attributable to controlling DOC (specifically humic-acid like substances, tyrosine, tryptophan). However, the addition of pre-oxidants led to significant shifts in water cytotoxicity to CHO cells forcing drivers, rendering humic-acid like substances the sole decisive cytotoxicity-inducing fluorophores. For the first time, 'sweet spots' were identified to simultaneously monitor cytotoxicity to CHO cells alongside turbidity and DOC. These methods better modulate water cytotoxicity to CHO cells without sacrificing conventional water treatment goals while shedding light onto the mechanisms behind.

20.
Water Res ; 245: 120635, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37738943

RESUMEN

During the COVID-19 pandemic, excessive amounts of disinfectants and their transformation products entered sewer systems worldwide, which was an extremely rare occurrence before. The stress of residual chlorine and disinfection by-products is not only likely to promote the spread of antibiotic resistance genes (ARGs), but also leads to the enrichment of chlorine-resistant bacteria that may also be resistant to antibiotics. Therefore, the potential impact of such discharge on ARG composition should be studied and the health risks should be assessed. Thus, this study combined high-throughput 16S rRNA gene amplicon sequencing and metagenomic analysis with long-term batch tests that involved two stages of stress and recovery to comprehensively evaluate the impact of residual chlorine on the microbial community and ARG compositions in sewer systems. The tests demonstrated that the disturbance of the microbial community structure by residual chlorine was reversible, but the change in ARG composition was persistent. This study found that vertical propagation and horizontal gene transfer jointly drove ARG composition succession in the biofilm, while the driving force was mainly horizontal gene transfer in the sediment. In this process, the biocide resistance gene (BRG) subtype chtR played an important role in promoting co-selection with ARGs through plasmids and integrative and conjugative elements. Moreover, it was further shown that the addition of sodium hypochlorite increased the risk of ARGs to human health, even after discontinuation of dosing, signifying that the impact was persistent. In general, this study strengthens the co-selection theory of ARGs and BRGs, and calls for improved disinfection strategies and more environmentally friendly disinfectants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA