Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Immunol ; 14: 1088654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180103

RESUMEN

Introduction: Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, currently affecting over 350 billion people globally. For the most prevalent late-stage form of this disease, atrophic AMD, there are no available prevention strategies or treatments, in part due to inherent difficulties in early-stage diagnosis. Photo-oxidative damage is a well-established model for studying inflammatory and cell death features that occur in late-stage atrophic AMD, however to date has not been investigated as a potential model for studying early features of disease onset. Therefore, in this study we aimed to determine if short exposure to photo-oxidative damage could be used to induce early retinal molecular changes and advance this as a potential model for studying early-stage AMD. Methods: C57BL/6J mice were exposed to 1, 3, 6, 12, or 24h photo-oxidative damage (PD) using 100k lux bright white light. Mice were compared to dim-reared (DR) healthy controls as well as mice which had undergone long periods of photo-oxidative damage (3d and 5d-PD) as known timepoints for inducing late-stage retinal degeneration pathologies. Cell death and retinal inflammation were measured using immunohistochemistry and qRT-PCR. To identify retinal molecular changes, retinal lysates were sent for RNA sequencing, following which bioinformatics analyses including differential expression and pathway analyses were performed. Finally, to investigate modulations in gene regulation as a consequence of degeneration, microRNA (miRNA) expression patterns were quantified using qRT-PCR and visualized using in situ hybridization. Results: Short exposure to photo-oxidative damage (1-24h-PD) induced early molecular changes in the retina, with progressive downregulation of homeostatic pathways including metabolism, transport and phototransduction observed across this time-course. Inflammatory pathway upregulation was observed from 3h-PD, preceding observable levels of microglia/macrophage activation which was noted from 6h-PD, as well as significant photoreceptor row loss from 24h-PD. Further rapid and dynamic movement of inflammatory regulator miRNA, miR-124-3p and miR-155-5p, was visualized in the retina in response to degeneration. Conclusion: These results support the use of short exposure to photo-oxidative damage as a model of early AMD and suggest that early inflammatory changes in the retina may contribute to pathological features of AMD progression including immune cell activation and photoreceptor cell death. We suggest that early intervention of these inflammatory pathways by targeting miRNA such as miR-124-3p and miR-155-5p or their target genes may prevent progression into late-stage pathology.


Asunto(s)
Atrofia Geográfica , Degeneración Macular , MicroARNs , Degeneración Retiniana , Ratones , Animales , Degeneración Retiniana/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Estrés Oxidativo
2.
Front Physiol ; 14: 1116898, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969592

RESUMEN

Background: Exercise has been shown to promote a healthier and longer life and linked to a reduced risk of developing neurodegenerative diseases including retinal degenerations. However, the molecular pathways underpinning exercise-induced cellular protection are not well understood. In this work we aim to profile the molecular changes underlying exercise-induced retinal protection and investigate how exercise-induced inflammatory pathway modulation may slow the progression of retinal degenerations. Methods: Female C57Bl/6J mice at 6 weeks old were given free access to open voluntary running wheels for a period of 28 days and then subjected to 5 days of photo-oxidative damage (PD)-induced retinal degeneration. Following, retinal function (electroretinography; ERG), morphology (optical coherence tomography; OCT) and measures of cell death (TUNEL) and inflammation (IBA1) were analysed and compared to sedentary controls. To decipher global gene expression changes as a result of voluntary exercise, RNA sequencing and pathway and modular gene co-expression analyses were performed on retinal lysates of exercised and sedentary mice that were subjected to PD, as well as healthy dim-reared controls. Results: Following 5 days of PD, exercised mice had significantly preserved retinal function, integrity and reduced levels of retinal cell death and inflammation, compared to sedentary controls. In response to voluntary exercise, inflammatory and extracellular matrix integrity pathways were significantly modulated, with the gene expression profile of exercised mice more closely trending towards that of a healthy dim-reared retina. Conclusion: We suggest that voluntary exercise may mediate retinal protection by influencing key pathways involved in regulating retinal health and shifting the transcriptomic profile to a healthy phenotype.

3.
Clin Exp Ophthalmol ; 50(1): 74-90, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741489

RESUMEN

The benefits of exercise to human health have long been recognised. However, only in the past decade have researchers started to discover the molecular benefits that exercise confers, especially to the central nervous system (CNS). These discoveries include the magnitude of molecular messages that are communicated from skeletal muscle to the CNS. Despite these advances in understanding, very limited studies have been conducted to decipher the molecular benefits of exercise in retinal health and disease. Here, we review the latest work on the effects of exercise on the retina and discuss its effects on the wider CNS, with a focus on demonstrating the potential applicability and comparative molecular mechanisms that may be occurring in the retina. This review covers the key molecular pathways where exercise exerts its effects: oxidative stress and mitochondrial health; inflammation; protein aggregation; neuronal health; and tissue crosstalk via extracellular vesicles. Further research on the benefits of exercise to the retina and its molecular messages within extracellular vesicles is highly topical in this field.


Asunto(s)
Degeneración Retiniana , Carrera , Humanos , Mitocondrias/metabolismo , Estrés Oxidativo , Retina/metabolismo , Degeneración Retiniana/metabolismo
4.
Mol Neurodegener ; 16(1): 60, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465369

RESUMEN

BACKGROUND: MicroRNA (miRNA) play a significant role in the pathogenesis of complex neurodegenerative diseases including age-related macular degeneration (AMD), acting as post-transcriptional gene suppressors through their association with argonaute 2 (AGO2) - a key member of the RNA Induced Silencing Complex (RISC). Identifying the retinal miRNA/mRNA interactions in health and disease will provide important insight into the key pathways miRNA regulate in disease pathogenesis and may lead to potential therapeutic targets to mediate retinal degeneration. METHODS: To identify the active miRnome targetome interactions in the healthy and degenerating retina, AGO2 HITS-CLIP was performed using a rodent model of photoreceptor degeneration. Analysis of publicly available single-cell RNA sequencing (scRNAseq) data was performed to identify the cellular location of AGO2 and key members of the microRNA targetome in the retina. AGO2 findings were verified by in situ hybridization (RNA) and immunohistochemistry (protein). RESULTS: Analysis revealed a similar miRnome between healthy and damaged retinas, however, a shift in the active targetome was observed with an enrichment of miRNA involvement in inflammatory pathways. This shift was further demonstrated by a change in the seed binding regions of miR-124-3p, the most abundant retinal AGO2-bound miRNA, and has known roles in regulating retinal inflammation. Additionally, photoreceptor cluster miR-183/96/182 were all among the most highly abundant miRNA bound to AGO2. Following damage, AGO2 expression was localized to the inner retinal layers and more in the OLM than in healthy retinas, indicating a locational miRNA response to retinal damage. CONCLUSIONS: This study provides important insight into the alteration of miRNA regulatory activity that occurs as a response to retinal degeneration and explores the miRNA-mRNA targetome as a consequence of retinal degenerations. Further characterisation of these miRNA/mRNA interactions in the context of the degenerating retina may provide an important insight into the active role these miRNA may play in diseases such as AMD.


Asunto(s)
Proteínas del Ojo/genética , Degeneración Macular/metabolismo , MicroARNs/genética , Retina/metabolismo , Animales , Proteínas Argonautas/metabolismo , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoprecipitación , Inflamación , Luz/efectos adversos , Degeneración Macular/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/aislamiento & purificación , MicroARNs/metabolismo , Estrés Oxidativo , Complejo Silenciador Inducido por ARN/metabolismo , Degeneración Retiniana/etiología , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Análisis de la Célula Individual , Transcriptoma
5.
Mol Neurobiol ; 58(2): 835-854, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33037565

RESUMEN

Although extensively investigated in inflammatory conditions, the role of pro-inflammatory microRNAs (miRNAs), miR-155 and miR-146a, has not been well-studied in retinal degenerative diseases. We therefore aimed to explore the role and regulation of these miRNA in the degenerating retina, with a focus on miR-155. C57BL/6J mice were subjected to photo-oxidative damage for up to 5 days to induce focal retinal degeneration. MiR-155 expression was quantified by qRT-PCR in whole retina, serum, and small-medium extracellular vesicles (s-mEVs), and a PrimeFlow™ assay was used to identify localisation of miR-155 in retinal cells. Constitutive miR-155 knockout (KO) mice and miR-155 and miR-146a inhibitors were utilised to determine the role of these miRNA in the degenerating retina. Electroretinography was employed as a measure of retinal function, while histological quantification of TUNEL+ and IBA1+ positive cells was used to quantify photoreceptor cell death and infiltrating immune cells, respectively. Upregulation of miR-155 was detected in retinal tissue, serum and s-mEVs in response to photo-oxidative damage, localising to the nucleus of a subset of retinal ganglion cells and glial cells and in the cytoplasm of photoreceptors. Inhibition of miR-155 showed increased function from negative controls and a less pathological pattern of IBA1+ cell localisation and morphology at 5 days photo-oxidative damage. While neither dim-reared nor damaged miR-155 KO animals showed retinal histological difference from controls, following photo-oxidative damage, miR-155 KO mice showed increased a-wave relative to controls. We therefore consider miR-155 to be associated with the inflammatory response of the retina in response to photoreceptor-specific degeneration.


Asunto(s)
Inflamación/genética , MicroARNs/metabolismo , Retina/fisiopatología , Degeneración Retiniana/genética , Degeneración Retiniana/fisiopatología , Animales , Núcleo Celular/metabolismo , Inflamación/complicaciones , Luz , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de la radiación , Retina/patología , Degeneración Retiniana/complicaciones
6.
Front Cell Dev Biol ; 8: 516, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32671067

RESUMEN

INTRODUCTION: MicroRNAs (miRNAs) are small, non-coding RNA molecules that have powerful regulatory properties, with the ability to regulate multiple messenger RNAs (mRNAs) and biological pathways. MicroRNA-223-3p (miR-223) is known to be a critical regulator of the innate immune response, and its dysregulation is thought to play a role in inflammatory disease progression. Despite miR-223 upregulation in numerous neurodegenerative conditions, largely in cells of the myeloid lineage, the role of miR-223 in the retina is relatively unexplored. Here, we investigated miR-223 in the healthy retina and in response to retinal degeneration. METHODS: miR-223-null mice were investigated in control and photo-oxidative damage-induced degeneration conditions. Encapsulated miR-223 mimics were intravitreally and intravenously injected into C57BL/6J wild-type mice. Retinal functional responses were measured using electroretinography (ERG), while extracted retinas were investigated by retinal histology (TUNEL and immunohistochemistry) and molecular analysis (qPCR and FACS). RESULTS: Retinal function in miR-223-/- mice was adversely affected, indicating that miR-223 may be critical in regulating the retinal response. In degeneration, miR-223 was elevated in the retina, circulating serum, and retinal extracellular vesicles. Conversely, retinal microglia and macrophages displayed a downregulation of miR-223. Further, isolated CD11b+ inflammatory cells from the retinas and circulation of miR-223-null mice showed an upregulation of pro-inflammatory genes that are critically linked to retinal inflammation and progressive photoreceptor loss. Finally, both local and systemic delivery of miR-223 mimics improved retinal function in mice undergoing retinal degeneration. CONCLUSION: miR-223 is required for maintaining normal retinal function, as well as regulating inflammation in microglia and macrophages. Further investigations are required to determine the targets of miR-223 and their key biological pathways and interactions that are relevant to retinal diseases. Future studies should investigate whether sustained delivery of miR-223 into the retina is sufficient to target these pathways and protect the retina from progressive degeneration.

7.
Front Cell Neurosci ; 14: 160, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670023

RESUMEN

Photoreceptor cell death and inflammation are known to occur progressively in retinal degenerative diseases such as age-related macular degeneration (AMD). However, the molecular mechanisms underlying these biological processes are largely unknown. Extracellular vesicles (EV) are essential mediators of cell-to-cell communication with emerging roles in the modulation of immune responses. EVs, including exosomes, encapsulate and transfer microRNA (miRNA) to recipient cells and in this way can modulate the environment of recipient cells. Dysregulation of EVs however is correlated to a loss of cellular homeostasis and increased inflammation. In this work we investigated the role of isolated retinal small-medium sized EV (s-mEV) which includes exosomes in both the healthy and degenerating retina. Isolated s-mEV from normal retinas were characterized using dynamic light scattering, transmission electron microscopy and western blotting, and quantified across 5 days of photo-oxidative damage-induced degeneration using nanotracking analysis. Small RNAseq was used to characterize the miRNA cargo of retinal s-mEV isolated from healthy and damaged retinas. Finally, the effect of exosome inhibition on cell-to-cell miRNA transfer and immune modulation was conducted using systemic daily administration of exosome inhibitor GW4869 and in situ hybridization of s-mEV-abundant miRNA, miR-124-3p. Electroretinography and immunohistochemistry was performed to assess functional and morphological changes to the retina as a result of GW4869-induced exosome depletion. Results demonstrated an inverse correlation between s-mEV concentration and photoreceptor survivability, with a decrease in s-mEV numbers following degeneration. Small RNAseq revealed that s-mEVs contained uniquely enriched miRNAs in comparison to in whole retinal tissue, however, there was no differential change in the s-mEV miRNAnome following photo-oxidative damage. Exosome inhibition via the use of GW4869 was also found to exacerbate retinal degeneration, with reduced retinal function and increased levels of inflammation and cell death demonstrated following photo-oxidative damage in exosome-inhibited mice. Further, GW4869-treated mice displayed impaired translocation of photoreceptor-derived miR-124-3p to the inner retina during damage. Taken together, we propose that retinal s-mEV and their miRNA cargo play an essential role in maintaining retinal homeostasis through immune-modulation, and have the potential to be used in targeted gene therapy for retinal degenerative diseases.

8.
9.
Mol Vis ; 26: 48-63, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32165826

RESUMEN

Purpose: The use of small non-coding nucleic acids, such as siRNA and miRNA, has allowed for a deeper understanding of gene functions, as well as for development of gene therapies for complex neurodegenerative diseases, including retinal degeneration. For effective delivery into the eye and transfection of the retina, suitable transfection methods are required. We investigated the use of a lipid-based transfection agent, Invivofectamine® 3.0 (Thermo Fisher Scientific), as a potential method for delivery of nucleic acids to the retina. Methods: Rodents were injected intravitreally with formulations of Invivofectamine 3.0 containing scrambled, Gapdh, Il-1ß, and C3 siRNAs, or sterile PBS (control) using a modified protocol for encapsulation of nucleic acids. TdT-mediated dUTP nick-end labeling (TUNEL) and IBA1 immunohistochemistry was used to determine histological cell death and inflammation. qPCR were used to determine the stress and inflammatory profile of the retina. Electroretinography (ERG) and optical coherence tomography (OCT) were employed as clinical indicators of retinal health. Results: We showed that macrophage recruitment, retinal stress, and photoreceptor cell death in animals receiving Invivofectamine 3.0 were comparable to those in negative controls. Following delivery of Invivofectamine 3.0 alone, no statistically significant changes in expression were found in a suite of inflammatory and stress genes, and ERG and OCT analyses revealed no changes in retinal function or morphology. Injections with siRNAs for proinflammatory genes (C3 and Il-1ß) and Gapdh, in combination with Invivofectamine 3.0, resulted in statistically significant targeted gene knockdown in the retina for up to 4 days following injection. Using a fluorescent Block-It siRNA, transfection was visualized throughout the neural retina with evidence of transfection observed in cells of the ganglion cell layer, inner nuclear layer, and outer nuclear layer. Conclusions: This work supports the use of Invivofectamine 3.0 as a transfection agent for effective delivery of nucleic acids to the retina for gene function studies and as potential therapeutics.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Lipoproteínas/farmacología , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Transfección/métodos , Animales , Muerte Celular/genética , Convertasas de Complemento C3-C5/genética , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Electrorretinografía , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Etiquetado Corte-Fin in Situ , Interleucina-1beta/genética , Lípidos/química , Lípidos/farmacología , Lipoproteínas/química , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Ratas , Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica
10.
Sci Rep ; 10(1): 2263, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041990

RESUMEN

Activation of the inflammasome is involved in the progression of retinal degenerative diseases, in particular, in the pathogenesis of Age-Related Macular Degeneration (AMD), with NLRP3 activation the focus of many investigations. In this study, we used genetic and pharmacological approaches to explore the role of the inflammasome in a mouse model of retinal degeneration. We identify that Casp1/11-/- mice have better-preserved retinal function, reduced inflammation and increased photoreceptor survivability. While Nlrp3-/- mice display some level of preservation of retinal function compared to controls, pharmacological inhibition of NLRP3 did not protect against photoreceptor cell death. Further, Aim2-/-, Nlrc4-/-, Asc-/-, and Casp11-/- mice show no substantial retinal protection. We propose that CASP-1-associated photoreceptor cell death occurs largely independently of NLRP3 and other established inflammasome sensor proteins, or that inhibition of a single sensor is not sufficient to repress the inflammatory cascade. Therapeutic targeting of CASP-1 may offer a more promising avenue to delay the progression of retinal degenerations.


Asunto(s)
Caspasa 1/metabolismo , Inflamasomas/inmunología , Degeneración Macular/inmunología , Células Fotorreceptoras/patología , Piroptosis/inmunología , Animales , Caspasa 1/genética , Caspasas Iniciadoras/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Furanos , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Humanos , Indenos , Inflamasomas/antagonistas & inhibidores , Inflamasomas/metabolismo , Inyecciones Intravítreas , Luz/efectos adversos , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/patología , Masculino , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo/inmunología , Estrés Oxidativo/efectos de la radiación , Células Fotorreceptoras/inmunología , Piroptosis/efectos de los fármacos , Piroptosis/genética , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/inmunología , Epitelio Pigmentado de la Retina/patología , Sulfonamidas , Sulfonas/administración & dosificación
11.
Invest Ophthalmol Vis Sci ; 59(11): 4362-4374, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30193308

RESUMEN

Purpose: Glutathione-S-transferase omega 1-1 (GSTO1-1) is a cytosolic glutathione transferase enzyme, involved in glutathionylation, toll-like receptor signaling, and calcium channel regulation. GSTO1-1 dysregulation has been implicated in oxidative stress and inflammation, and contributes to the pathogenesis of several diseases and neurological disorders; however, its role in retinal degenerations is unknown. The aim of this study was to investigate the role of GSTO1-1 in modulating oxidative stress and consequent inflammation in the normal and degenerating retina. Methods: The role of GSTO1-1 in retinal degenerations was explored by using Gsto1-/- mice in a model of retinal degeneration. The expression and localization of GSTO1-1 were investigated with immunohistochemistry and Western blot. Changes in the expression of inflammatory (Ccl2, Il-1ß, and C3) and oxidative stress (Nox1, Sod2, Gpx3, Hmox1, Nrf2, and Nqo1) genes were investigated via quantitative real-time polymerase chain reaction. Retinal function in Gsto1-/- mice was investigated by using electroretinography. Results: GSTO1-1 was localized to the inner segment of cone photoreceptors in the retina. Gsto1-/- photo-oxidative damage (PD) mice had decreased photoreceptor cell death as well as decreased expression of inflammatory (Ccl2, Il-1ß, and C3) markers and oxidative stress marker Nqo1. Further, retinal function in the Gsto1-/- PD mice was increased as compared to wild-type PD mice. Conclusions: These results indicate that GSTO1-1 is required for inflammatory-mediated photoreceptor death in retinal degenerations. Targeting GSTO1-1 may be a useful strategy to reduce oxidative stress and inflammation and ameliorate photoreceptor loss, slowing the progression of retinal degenerations.


Asunto(s)
Proteínas Portadoras/fisiología , Modelos Animales de Enfermedad , Glutatión Transferasa/fisiología , Células Fotorreceptoras/fisiología , Degeneración Retiniana/metabolismo , Animales , Biomarcadores/metabolismo , Western Blotting , Supervivencia Celular/fisiología , Complemento C3/genética , Citocinas/genética , Electrorretinografía , Femenino , Marcadores Genéticos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/metabolismo , Retina/fisiopatología , Degeneración Retiniana/fisiopatología
12.
Invest Ophthalmol Vis Sci ; 59(10): 4094-4105, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30098196

RESUMEN

Purpose: We sought to determine the role and retinal cellular location of microRNA-124 (miR-124) in a neuroinflammatory model of retinal degeneration. Further, we explored the anti-inflammatory relationship of miR-124 with a predicted messenger RNA (mRNA) binding partner, chemokine (C-C motif) ligand 2 (Ccl2), which is crucially involved in inflammatory cell recruitment in the damaged retina. Methods: Human AMD donor eyes and photo-oxidative damaged (PD) mice were labeled for miR-124 expression using in situ hybridization. PDGFRa-cre RFP mice were used for Müller cell isolation from whole retinas. MIO-M1 immortalized cells and rat primary Müller cells were used for in vitro analysis of miR-124 expression and its relationship with Ccl2. Therapeutic efficacy was tested with intravitreal administration of miR-124 mimic in mice, with electroretinography used to determine retinal function. IBA1 immunohistochemistry and photoreceptor row counts were used for assessment of inflammation and cell death. Results: MiR-124 expression was correlated with progressive retinal damage, inflammation, and cell death in human AMD and PD mice. In addition, miR-124 expression was inversely correlated to Ccl2 expression in mice following PD. MiR-124 was localized to both neuronal-like photoreceptors and glial (Müller) cells in the retina, with a redistribution from neurons to glia occurring as a consequence of PD. Finally, intravitreal administration of miR-124 mimics decreased retinal inflammation and photoreceptor cell death, and improved retinal function. Conclusions: This study has provided an understanding of the mechanism behind miR-124 in the degenerating retina and demonstrates the usefulness of miR-124 mimics for the modulation of retinal degenerations.


Asunto(s)
MicroARNs/metabolismo , Retina/metabolismo , Degeneración Retiniana/metabolismo , Análisis de Varianza , Animales , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Ratas
13.
Mol Vis ; 24: 201-217, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527116

RESUMEN

Purpose: Systemic increases in reactive oxygen species, and their association with inflammation, have been proposed as an underlying mechanism linking obesity and age-related macular degeneration (AMD). Studies have found increased levels of oxidative stress biomarkers and inflammatory cytokines in obese individuals; however, the correlation between obesity and retinal inflammation has yet to be assessed. We used the leptin-deficient (ob/ob) mouse to further our understanding of the contribution of obesity to retinal oxidative stress and inflammation. Methods: Retinas from ob/ob mice were compared to age-matched wild-type controls for retinal function (electroretinography) and gene expression analysis of retinal stress (Gfap), oxidative stress (Gpx3 and Hmox1), and complement activation (C3, C2, Cfb, and Cfh). Oxidative stress was further quantified using a reactive oxygen species and reactive nitrogen species (ROS and RNS) assay. Retinal microglia and macrophage migration to the outer retina and complement activation were determined using immunohistochemistry for IBA1 and C3, respectively. Retinas and sera were used for metabolomic analysis using QTRAP mass spectrometry. Results: Retinal function was reduced in ob/ob mice, which correlated to changes in markers of retinal stress, oxidative stress, and inflammation. An increase in C3-expressing microglia and macrophages was detected in the outer retinas of the ob/ob mice, while gene expression studies showed increases in the complement activators (C2 and Cfb) and a decrease in a complement regulator (Cfh). The expression of several metabolites were altered in the ob/ob mice compared to the controls, with changes in polyunsaturated fatty acids (PUFAs) and branched-chain amino acids (BCAAs) detected. Conclusions: The results of this study indicate that oxidative stress, inflammation, complement activation, and lipid metabolites in the retinal environment are linked with obesity in ob/ob animals. Understanding the interplay between these components in the retina in obesity will help inform risk factor analysis for acquired retinal degenerations, including AMD.


Asunto(s)
Activación de Complemento , Regulación de la Expresión Génica/inmunología , Obesidad/inmunología , Estrés Oxidativo/inmunología , Retina/inmunología , Degeneración Retiniana/inmunología , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/inmunología , Complemento C2/genética , Complemento C2/inmunología , Complemento C3/genética , Complemento C3/inmunología , Factor B del Complemento/genética , Factor B del Complemento/inmunología , Factor H de Complemento/genética , Factor H de Complemento/inmunología , Electrorretinografía , Ácidos Grasos/inmunología , Ácidos Grasos/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/inmunología , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/inmunología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/inmunología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/inmunología , Obesidad/complicaciones , Obesidad/genética , Obesidad/patología , Retina/patología , Degeneración Retiniana/complicaciones , Degeneración Retiniana/genética , Degeneración Retiniana/patología
14.
Invest Ophthalmol Vis Sci ; 58(7): 2977-2990, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28605809

RESUMEN

Purpose: Complement system dysregulation is strongly linked to the progression of age-related macular degeneration (AMD). Deposition of complement including C3 within the lesions in atrophic AMD is thought to contribute to lesion growth, although the contribution of local cellular sources remains unclear. We investigated the role of retinal microglia and macrophages in complement activation within atrophic lesions, in AMD and in models of focal retinal degeneration. Methods: Human AMD donor retinas were labeled for C3 expression via in situ hybridization. Rats were subject to photo-oxidative damage, and lesion expansion was tracked over a 2-month period using optical coherence tomography (OCT). Three strategies were used to determine the contribution of local and systemic C3 in mice: total C3 genetic ablation, local C3 inhibition using intravitreally injected small interfering RNA (siRNA), and depletion of serum C3 using cobra venom factor. Results: Retinal C3 was expressed by microglia/macrophages located in the outer retina in AMD eyes. In rodent photo-oxidative damage, C3-expressing microglia/macrophages and complement activation were located in regions of lesion expansion in the outer retina over 2 months. Total genetic ablation of C3 ameliorated degeneration and complement activation in retinas following damage, although systemic depletion of serum complement had no effect. In contrast, local suppression of C3 expression using siRNA inhibited complement activation and deposition, and reduced cell death. Conclusions: These findings implicate C3, produced locally by retinal microglia/macrophages, as contributing causally to retinal degeneration. Consequently, this suggests that C3-targeted gene therapy may prove valuable in slowing the progression of AMD.


Asunto(s)
Activación de Complemento/fisiología , Complemento C3/genética , Regulación de la Expresión Génica , Macrófagos/metabolismo , ARN/genética , Retina/metabolismo , Degeneración Retiniana/genética , Animales , Animales Recién Nacidos , Complemento C3/biosíntesis , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Hibridación in Situ , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Tomografía de Coherencia Óptica
15.
Mol Neurodegener ; 12(1): 31, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28438165

RESUMEN

BACKGROUND: Chemokine signalling is required for the homing of leukocytes during retinal inflammation, and is associated with pathogenesis of diseases such as age-related macular degeneration (AMD). Here, we explore the role of interleukin-1ß (IL-1ß) in modulating AMD-associated chemokines Ccl2, Cxcl1, and Cxcl10 during photo-oxidative retinal damage, and the effect on both the accumulation of outer-retinal macrophages, and death of photoreceptors. METHODS: Inhibition of retinal IL-1ß expression was performed using either siRNA or antibody neutralisation, which was intravitreally injected in SD rats prior to photo-oxidative damage. Changes in the expression and localisation of Il-1ß, Ccl2, Cxcl1 and Cxcl10 genes were assessed using qPCR and in situ hybridisation, while the recruitment of retinal macrophages was detected using immunohistochemistry for IBA1. Levels of photoreceptor cell death were determined using TUNEL. RESULTS: Photo-oxidative damage elevated the expression of Il-1ß and inflammasome-related genes, and IL-1ß protein was detected in microglia infiltrating the outer retina. This was associated with increased expression of Ccl2, Cxcl1, and Cxcl10. Intravitreal IL-1ß inhibitors suppressed chemokine expression following damage and reduced macrophage accumulation and photoreceptor death. Moreover, in Müller and RPE cell cultures, and in vivo, Ccl2, Cxcl1 and Cxcl10 were variously upregulated when stimulated with IL-1ß, with increased macrophage accumulation detected in vivo. CONCLUSIONS: IL-1ß is produced by retinal microglia and macrophages and promotes chemokine expression by Müller cells and RPE in retinal degeneration. Targeting IL-1ß may prove efficacious in broadly suppressing chemokine-mediated inflammation in retinal dystrophies such as AMD.


Asunto(s)
Quimiocinas/metabolismo , Células Ependimogliales/citología , Interleucina-1beta/metabolismo , Microglía/metabolismo , Degeneración Retiniana/metabolismo , Animales , Modelos Animales de Enfermedad , Inflamación/metabolismo , Macrófagos/metabolismo , Ratas Sprague-Dawley , Retina/metabolismo
16.
Curr Eye Res ; 41(11): 1473-1481, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27217092

RESUMEN

PURPOSE: Light is a requirement for the function of photoreceptors in visual processing. However, prolonged light exposure can be toxic to photoreceptors, leading to increased reactive oxygen species (ROS), lipid peroxidation, and photoreceptor cell death. We used the 661W mouse cone photoreceptor-like cell line to study the effects of pyruvate in protecting these cells from light-induced toxicity. METHODS: 661W cells were exposed to 15,000 lux continuous bright light for 5 hours and incubated in Dulbecco's modified eagle medium (DMEM) with various concentrations of pyruvate. Following light damage, cells were assessed for changes in morphology, cell toxicity, viability, and ROS production. Mitochondrial respiration and anaerobic glycolysis were also assessed using a Seahorse Xfe96 extracellular flux analyzer. RESULTS: We found that cell death caused by light damage in 661W cells was dramatically reduced in the presence of pyruvate. Cells with pyruvate-supplemented media also showed attenuation of oxidative stress and maintained normal levels of ATP. We also found that alterations in the concentrations of pyruvate had no effect on mitochondrial respiration or glycolysis in light-damaged cells. CONCLUSIONS: Taken together, the results show that pyruvate is protective against light damage but does not alter the metabolic output of the cells, indicating an alternative role for pyruvate in reducing oxidative stress. Thus, sodium pyruvate is a possible candidate for the treatment against the oxidative stress component of retinal degenerations.


Asunto(s)
Muerte Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ácido Pirúvico/farmacología , Degeneración Retiniana/prevención & control , Animales , Recuento de Células , Línea Celular , Modelos Animales de Enfermedad , Luz/efectos adversos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/metabolismo , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA