Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
BMC Res Notes ; 17(1): 192, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982545

RESUMEN

OBJECTIVE: The current research aimed to investigate the physicochemical and bacteriological quality status of the Kalte River in Wolaita Sodo Town, southern Ethiopia. METHODS: A total of 42 water samples were collected using sterile glass bottles from three different river sites: Damota (upstream), Kera (midstream), and Gututo (downstream). All the water samples were examined for the presence of heterotrophic bacteria, total coliform and fecal coliform using direct plate count method and membrane filtration method. Standard methods suggested by American water works association were used to analysis the physicochemical parameters of the water samples. RESULTS: The results revealed that the total heterotrophic bacteria, total coliform, and fecal coliform count ranged from 8.9 to 12.6 × 104 cfu/ml, 7.5-11.3 × 102 cfu/ml and 5.7-9.7 × 104 cfu/ml, respectively. The bacterial count results indicated that the river water crossed the WHO-recommended limit of potable water. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella, and Shigella species were the common bacterial pathogens isolated from river water samples. The results of the physicochemical analysis revealed that some of the parameters Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and turbidity exceeded the maximum permissible limits of WHO and other parameters were below the WHO permissible limits. CONCLUSION: Therefore, the presence of bacterial pathogens, fecal coliform indicators, and some physicochemical parameters of the Kalte River exceeding the recommended limits may expose users of the river water to the risk of infection.


Asunto(s)
Ríos , Microbiología del Agua , Etiopía , Ríos/microbiología , Ríos/química , Bacterias/aislamiento & purificación , Bacterias/clasificación , Enterobacteriaceae/aislamiento & purificación , Escherichia coli/aislamiento & purificación , Calidad del Agua , Staphylococcus aureus/aislamiento & purificación , Pseudomonas aeruginosa/aislamiento & purificación , Salmonella/aislamiento & purificación , Shigella/aislamiento & purificación , Monitoreo del Ambiente/métodos , Agua Potable/microbiología
2.
J Fungi (Basel) ; 4(2)2018 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-29587361

RESUMEN

Plants are all inhabited by endophytic fungi in the interior of their tissues. The neem tree Azadirachta is an Indian lilac used for various therapeutic purposes in different forms of preparations. This plant hosts different types of endophytic fungi. In some cases, different tissues of a given plant are inhabited by different endophytic fungi which are discussed in this paper. Recently, there have been new reports on endophytic fungi and their bioactive compounds from Azadirachta indica. The biological function of bioactive compounds was discussed in view of their future industrial prospects. There are a number of different research investigations that examine the endophytes isolated and screened for their potential bioactive secondary metabolites from neem, but there is no comprehensive review on neem endophytes and their secondary metabolites to bring all trends from different researchers together. Therefore, in this review, we have discussed the endophytic fungi from the different tissues of neem, in view of the latest understandings of antimicrobial, antioxidant, and pathogenicity target compounds. Importantly, tracing the previous findings would pave the way to forecast the missing link for future work by researchers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA