Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Vaccine ; 42(24): 126268, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39208565

RESUMEN

Mycoplasma (M.) hyopneumoniae is a primary etiological agent of porcine enzootic pneumonia (PEP), a disease that causes significant economic losses to pig farming worldwide. Current commercial M. hyopneumoniae vaccines induce partial protection, decline in preventing transmission of this pathogen or inducing complete immunity, evidencing the need for improving vaccines against PEP. In our study, we aimed to test the effectiveness of the SBA-15 ordered mesoporous silica nanostructured particles as an immune adjuvant of a vaccine composed of M. hyopneumoniae strain 232 proteins encapsulated in SBA-15 and administered by intramuscular route in piglets to evaluate the immune responses and immune-protection against challenge. Forty-eight 24-day-old M. hyopneumoniae-free piglets were divided into four experimental groups with different protocols, encompassing a commercial vaccine against M. hyopneumoniae, SBA-15 vaccine, SBA-15 adjuvant without antigens and a non-immunized group. All piglets were challenged with the virulent strain 232 of M. hyopneumoniae. Piglets that received the SBA-15 and commercial vaccine presented marked immune responses characterized by anti-M. hyopneumoniae IgA and IgG antibodies in serum, anti-M. hyopneumoniae IgA antibodies in nasal mucosa and showed an upregulation of IL-17 and IL-4 cytokines and downregulation of IFN-γ in lungs 35 days post-infection. Piglets immunized with SBA-15 vaccine presented a reduction of bacterial shedding compared to piglets immunized with a commercial bacterin. In addition, piglets from SBA-15 adjuvant suspension group presented increased IL-17 gene expression in the lungs without involvement of Th1 and Th2 responses after challenge. These results indicated that SBA-15 vaccine induced both humoral and cell-mediated responses in the upper respiratory tract and lungs, first site of replication and provided protection against M. hyopneumoniae infection with a homologous strain with reduction of lung lesions and bacterial shedding. Finally, these results enhance the potential use of new technologies such as nanostructured particles applied in vaccines for the pig farming industry.

2.
Res Vet Sci ; 158: 141-150, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004428

RESUMEN

Mycoplasma hyopneumoniae, the main etiological agent of Porcine Enzootic Pneumonia, is widely spread in swine production worldwide. Its prevention is of great interest for the productive system, since its colonization in the lung tissue leads to intense production losses. This study aimed to compare the M. hyopneumoniae shedding and acute-phase response in 30 pigs submitted to different vaccination protocols: an experimental oral vaccine using a nanostructured mesoporous silica (SBA-15) as adjuvant (n = 10); an intramuscular commercially available vaccine at 24 days of age (n = 10); and a control group (n = 10) following experimental challenge with M. hyopneumoniae. Laryngeal and nasal swabs were collected weekly and oral fluids were collected at 7, 10, 14, 17, 23, 28, 35, 42, and 49 days post-infection to monitor pathogen excretion by qPCR. Nasal swabs were also used to detect anti-M. hyopneumoniae IgA by ELISA. Blood samples were collected for monitoring acute phase proteins. The antibody response was observed in both immunized groups seven days after vaccination, while the control group became positive for this immunoglobulin at 4 weeks after challenge. Lung lesion score was similar in the immunized groups, and lower than that observed in the control. SBA-15-adjuvanted oral vaccine provided immunological response, decreased shedding of M. hyopneumoniae and led to mucosal protection confirmed by the reduced pulmonary lesions. This study provides useful data for future development of vaccines against M. hyopneumoniae.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Porcinos , Animales , Inmunidad Mucosa , Vacunas Bacterianas , Neumonía Porcina por Mycoplasma/prevención & control , Dióxido de Silicio
3.
Biologicals ; 80: 18-26, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36414490

RESUMEN

Routine immunization against diphtheria and tetanus has drastically reduced the incidence of these diseases worldwide. Anti-diphtheria/tetanus vaccine has in general aluminum salt as adjuvant in its formulation that can produce several adverse effects. There is a growing interest in developing new adjuvants. In this study, we evaluated the efficiency of SBA-15 as an adjuvant in subcutaneous immunization in mice with diphtheria (dANA) and tetanus (tANA) anatoxins as well as with the mixture of them (dtANA). The tANA molecules and their encapsulation in SBA-15 were characterized using Small-Angle X-ray Scattering (SAXS), Dynamical Light Scattering (DLS), Nitrogen Adsorption Isotherm (NAI), Conventional Circular Dichroism (CD)/Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy, and Tryptophan Fluorescence Spectroscopy (FS). The primary and secondary antibody response elicited by subcutaneous immunization of High (HIII) and Low (LIII) antibody responder mice with dANA, tANA, or dtANA encapsulated in the SBA-15 were determined. We demonstrated that SBA-15 increases the immunogenicity of dANA and tANA antigens, especially when administered in combination. We also verified that SBA-15 modulates the antibody response of LIII mice, turning them into high antibody responder. Thus, these results suggest that SBA-15 may be an effective adjuvant for different vaccine formulations.


Asunto(s)
Difteria , Tétanos , Ratones , Animales , Inmunidad Humoral , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Difteria/prevención & control , Tétanos/prevención & control , Toxoide Tetánico , Dióxido de Silicio/farmacología , Adyuvantes Inmunológicos/farmacología , Inmunización Secundaria/métodos , Anticuerpos Antibacterianos
4.
Pharmaceutics ; 14(9)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36145723

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. Curcumin-loaded mesoporous silica nanoparticles (MSN-CCM) can overcome the drawbacks related to the free curcumin (CCM) clinical application, such as water insolubility and low bioavailability, besides acting over the main causes associated to AD. A thermo-responsive hydrogel is an interesting approach for facilitating the administration of the nanosystem via a nasal route, as well as for overcoming mucociliary clearance mechanisms. In light of this, MSN-CCM were dispersed in the hydrogel and evaluated through in vitro and in vivo assays. The MSNs and MSN-CCM were successfully characterized by physicochemical analysis and a high value of the CCM encapsulation efficiency (EE%, 87.70 ± 0.05) was achieved. The designed thermo-responsive hydrogel (HG) was characterized by rheology, texture profile analysis, and ex vivo mucoadhesion, showing excellent mechanical and mucoadhesive properties. Ex vivo permeation studies of MSN-CCM and HG@MSN-CCM showed high permeation values (12.46 ± 1.08 and 28.40 ± 1.88 µg cm-2 of CCM, respectively) in porcine nasal mucosa. In vivo studies performed in a streptozotocin-induced AD model confirmed that HG@MSN-CCM reverted the cognitive deficit in mice, acting as a potential formulation in the treatment of AD.

5.
Materials (Basel) ; 15(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35329718

RESUMEN

Pulp revascularization of teeth with necrotic pulp has become an alternative treatment in cases with immature apex. Microbial control is essential to achieve a successful outcome and continued root development. Enterococcus faecalis (E. faecalis) is the most frequently isolated bacterial species in root canals of endodontically failed teeth. Our main goal was to compare the in-vitro antimicrobial efficacy of different antibiotic formulations delivered by ordered mesoporous silica (OMS) against E. faecalis. To determine antibiotic susceptibility, we tested OMS and triple antibiotic paste (TAP; ciprofloxacin:metronidazole:minocycline) with different reagents in different concentrations, using the Kirby−Bauer disk diffusion method. OMS and metronidazole showed no antibacterial activity against E. faecalis. Mixtures of OMS and antibiotics in proportions of 2:2:14 and 4:1:7 (mg/L of ciprofloxacin:metronidazole:minocycline, respectively) showed the lowest antibacterial activity. The antibacterial activity of the combined solutions of ciprofloxacin and metronidazole was significantly higher (p < 0.005). Combinations in different concentrations of minocycline, ciprofloxacin, and metronidazole in OMS have shown activity against E. faecalis, although the combined use of ciprofloxacin and metronidazole has shown the most effective results. This study demonstrates the efficacy of intracanal antibiotic combination paste activity against E. faecalis, avoiding the use of minocycline, whose undesirable effect of teeth staining is a common problem for patients and professionals in dental clinic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA