Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
ACS Appl Mater Interfaces ; 15(42): 49595-49610, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37823554

RESUMEN

We developed a procedure for selective 2,4-dimethylphenol, DMPh, direct electro-oxidation to 3,3',5,5'-tetramethyl-2,2'-biphenol, TMBh, a C-C coupled product. For that, we used an electrode coated with a product-selective molecularly imprinted polymer (MIP). The procedure is reasonably selective toward TMBh without requiring harmful additives or elevated temperatures. The TMBh product itself was used as a template for imprinting. We followed the template interaction with various functional monomers (FMs) using density functional theory (DFT) simulations to select optimal FM. On this basis, we used a prepolymerization complex of TMBh with carboxyl-containing FM at a 1:2 TMBh-to-FM molar ratio for MIP fabrication. The template-FM interaction was also followed by using different spectroscopic techniques. Then, we prepared the MIP on the electrode surface in the form of a thin film by the potentiodynamic electropolymerization of the chosen complex and extracted the template. Afterward, we characterized the fabricated films by using electrochemistry, FTIR spectroscopy, and AFM, elucidating their composition and morphology. Ultimately, the DMPh electro-oxidation was performed on the MIP film-coated electrode to obtain the desired TMBh product. The electrosynthesis selectivity was much higher at the electrode coated with MIP film in comparison with the reference nonimprinted polymer (NIP) film-coated or bare electrodes, reaching 39% under optimized conditions. MIP film thickness and electrosynthesis parameters significantly affected the electrosynthesis yield and selectivity. At thicker films, the yield was higher at the expense of selectivity, while the electrosynthesis potential increase enhanced the TMBh product yield. Computer simulations of the imprinted cavity interaction with the substrate molecule demonstrated that the MIP cavity promoted direct coupling of the substrate to form the desired TMBh product.

2.
Biosens Bioelectron ; 236: 115381, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37267687

RESUMEN

Redox-active molecularly imprinted polymer nanoparticles selective for glyphosate, MIP-Gly NPs, were devised, synthesized, and subsequently integrated onto platinum screen-printed electrodes (Pt-SPEs) to fabricate a chemosensor for selective determination of glyphosate (Gly) without the need for redox probe in the test solution. That was because, ferrocenylmethyl methacrylate was added to the polymerization mixtures during the NPs synthesis so that the resulting MIP-Gly NPs contained covalently immobilized ferrocenyl moieties as the reporting redox ingredient, conferring these NPs with electroactive properties. MIP-Gly NPs of four different compositions were evaluated. The herein described approach represents a simple and effective way to endow MIP NPs with electrochemical reporting capabilities with neither the need to functionalize them post-synthesis nor to use electrochemical mediators present in the tested solution during the analyte determinations. MIP-Gly NPs synthesized using allylamine and squaramide-based monomers appeared most selective to Gly. The Pt-SPEs modified with MIP-Gly NPs were characterized with differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Changes in the DPV peak originating from the oxidation of the ferrocenyl moieties in these MIP-Gly NPs served as the analytical signal. The DPV limit of detection and the linear dynamic concentration range for Gly were 3.7 pM and 25 pM-500 pM, respectively. Moreover, the selectivity of the fabricated chemosensors was sufficiently high to determine Gly successfully in spiked river water samples.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Nanopartículas , Polímeros Impresos Molecularmente , Polímeros/química , Impresión Molecular/métodos , Técnicas Biosensibles/métodos , Nanopartículas/química , Electrodos , Técnicas Electroquímicas/métodos , Límite de Detección , Glifosato
3.
J Mater Chem B ; 11(8): 1659-1669, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36722440

RESUMEN

Herein we described a post-imprinting modification of the imprinted molecular cavities for electrochemical sensing of a target protein. Imprinted molecular cavities were generated by following the semi-covalent surface imprinting approach. These mesoporous cavities were modified with a ferrocene 'electrochemical' tracer for electrochemical transduction of the target protein recognition. Electrochemical sensors prepared after post-imprinting modification showed a linear response in the concentration range of 0.5 to 50 µM. Chemosensors fabricated based on capacitive impedimetric transduction demonstrated that imprinted molecular cavities without post-imprinting modification showed better selectivity. Scanning electrochemical microscopy (SECM) was used for the surface characterization of imprinted molecular cavities modified with ferrocene electrochemical tracers. SECM analysis performed in the feedback mode monitor changes in the surface state of the ferrocene-modified polymer film. The kinetics of the mediator regeneration was almost 1.8 times higher on the non-imprinted surface versus the post-imprinting modified molecular imprinted polymer.


Asunto(s)
Impresión Molecular , Polímeros , Metalocenos , Polímeros/química , Microscopía Electroquímica de Rastreo , Proteínas
4.
Crit Rev Food Sci Nutr ; : 1-34, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36300633

RESUMEN

In the global market era, food product control is very challenging. It is impossible to track and control all production and delivery chains not only for regular customers but also for the State Sanitary Inspections. Certified laboratories currently use accurate food safety and quality inspection methods. However, these methods are very laborious and costly. The present review highlights the need to develop fast, robust, and cost-effective analytical assays to determine food contamination. Application of the molecularly imprinted polymers (MIPs) as selective recognition units for chemosensors' fabrication was herein explored. MIPs enable fast and inexpensive electrochemical and optical transduction, significantly improving detectability, sensitivity, and selectivity. MIPs compromise durability of synthetic materials with a high affinity to target analytes and selectivity of molecular recognition. Imprinted molecular cavities, present in MIPs structure, are complementary to the target analyte molecules in terms of size, shape, and location of recognizing sites. They perfectly mimic natural molecular recognition. The present review article critically covers MIPs' applications in selective assays for a wide range of food products. Moreover, numerous potential applications of MIPs in the food industry, including sample pretreatment before analysis, removal of contaminants, or extraction of high-value ingredients, are discussed.

5.
J Agric Food Chem ; 69(48): 14689-14698, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34841873

RESUMEN

Inspired by the easy intercalation of quinoxaline heterocyclic aromatic amines (HAAs) in double-stranded DNA (dsDNA), we synthesized a nucleobase-functionalized molecularly imprinted polymer (MIP) as the recognition unit of an impedimetric chemosensor for the selective determination of a 2-amino-3,7,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (7,8-DiMeIQx) HAA. HAAs are generated in meat and fish processed at high temperatures. They are considered to be potent hazardous carcinogens. The MIP film was prepared by potentiodynamic electropolymerization of a pre-polymerization complex of two adenine- and one thymine-substituted bis(2,2'-bithien-5-yl)methane functional monomer molecules with one 7,8-DiMeIQx template molecule, in the presence of the 2,4,5,2',4',5'-hexa(thiophene-2-yl)-3,3'-bithiophene cross-linking monomer, in solution. The as-formed MIP chemosensor allowed for the selective impedimetric determination of 7,8-DiMeIQx in the 47 to 400 µM linear dynamic concentration range with a limit of detection of 15.5 µM. The chemosensor was successfully applied for 7,8-DiMeIQx determination in the pork meat extract as a proof of concept.


Asunto(s)
Impresión Molecular , Carne de Cerdo , Carne Roja , Aminas , Animales , ADN , Electrodos , Polímeros Impresos Molecularmente , Porcinos
6.
J Mater Chem B ; 9(11): 2717-2726, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33683271

RESUMEN

Strong nonspecific protein/cell adhesion on conducting polymer (CP)-based bioelectronic devices can cause an increase in the impedance or the malfunction of the devices. Incorporating oligo(ethylene glycol) or zwitterionic functionalities with CPs has demonstrated superior performance in the reduction of nonspecific adhesion. However, there is no report on the evaluation of the antifouling stability of oligo(ethylene glycol) and zwitterion-functionalized CPs under electrical stimulation as a simulation of the real situation of device operation. Moreover, there is a lack of understanding of the correlation between the molecular structure of antifouling CPs and the antifouling and electrochemical stabilities of the CP-based electrodes. To address the aforementioned issue, we fabricated a platform with antifouling poly(3,4-ethylenedioxythiophene) (PEDOT) featuring tri(ethylene glycol), tetra(ethylene glycol), sulfobetaine, or phosphorylcholine (PEDOT-PC) to evaluate the stability of the antifouling/electrochemical properties of antifouling PEDOTs before and after electrical stimulation. The results reveal that the PEDOT-PC electrode not only exhibits good electrochemical stability, low impedance, and small voltage excursion, but also shows excellent resistance toward proteins and HAPI microglial cells, as a cell model of inflammation, after the electrical stimulation. The stable antifouling/electrochemical properties of zwitterionic PEDOT-PC may aid its diverse applications in bioelectronic devices in the future.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Técnicas Electroquímicas , Polímeros/farmacología , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Células Cultivadas , Ratones , Microelectrodos , Estructura Molecular , Células 3T3 NIH , Imagen Óptica , Polimerizacion , Polímeros/síntesis química , Polímeros/química , Ratas
7.
Bioelectrochemistry ; 138: 107695, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33296790

RESUMEN

A molecularly imprinted polymer (MIP) film based electrochemical sensor for selective determination of tyramine was devised, fabricated, and tested. Tyramine is generated in smoked and fermented food products. Therefore, it may serve as a marker of the rottenness of these products. Importantly, intake of large amounts of tyramine by patients treated with monoamine oxidase (MAO) inhibitors may lead to a "cheese effect", namely, a dangerous hypertensive crisis. The limit of detection at S/N = 3 of the chemosensor, in both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) determinations, with the use of the Fe(CN)64-/Fe(CN)63- redox probe, was 159 and 168 µM tyramine, respectively. The linear dynamic concentration range was 290 µM to 2.64 mM tyramine. The chemosensor was highly selective with respect to the glucose, urea, and creatinine interferences. Its DPV determined apparent imprinting factor was 5.6. Moreover, the mechanism of the "gate effect" in the operation of the polymer film-coated electrodes was unraveled.


Asunto(s)
Electroquímica/instrumentación , Límite de Detección , Polímeros Impresos Molecularmente/química , Tiramina/análisis , Electrodos , Modelos Lineales , Oxidación-Reducción , Tiramina/química
8.
ACS Sens ; 5(12): 3710-3720, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33225686

RESUMEN

In this Review, we have summarized recent trends in protein template imprinting. We emphasized a new trend in surface imprinting, namely, oriented protein immobilization. Site-directed proteins were assembled through specially selected functionalities. These efforts resulted in a preferably oriented homogeneous protein construct with decreased protein conformation changes during imprinting. Moreover, the maximum functionality for protein recognition was utilized. Various strategies were exploited for oriented protein immobilization, including covalent immobilization through a boronic acid group, metal coordinating center, and aptamer-based immobilization. Moreover, we have discussed the involvement of semicovalent as well as covalent imprinting. Interestingly, these approaches provided additional recognition sites in the molecular cavities imprinted. Therefore, these molecular cavities were highly selective, and the binding kinetics was improved.


Asunto(s)
Impresión Molecular , Ácidos Borónicos
9.
Biosens Bioelectron ; 169: 112589, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32942142

RESUMEN

New thiophene-carbazole functional and cross-linking monomers electropolymerizing at potentials sufficiently low for molecular imprinting of an electroactive aripiprazole antipsychotic drug were herein designed and synthesized. Numerous conducting molecularly imprinted polymer (MIP) films are deposited by electropolymerization at relatively low potentials by electro-oxidation of pyrrole, aniline, phenol, or 3,4-ethylenedioxythiophene (EDOT). However, their interactions with templates are not sufficiently strong. Hence, it is necessary to introduce additional recognizing sites in these cavities to increase their affinity to the target molecules. For that, functional monomers derivatized with substituents forming stable complexes with the templates are used. However, oxidation potentials of these derivatives are often, disadvantageously, higher than that of parent monomers. Therefore, we designed and synthesized new functional and cross-linking monomers, which are oxidized at sufficiently low potentials. The deposited MIP and non-imprinted polymer (NIP) films were characterized by PM-IRRAS and UV-vis spectroscopy and imaged with AFM. The structure of the aripiprazole pre-polymerization complex with functional monomers was optimized with density functional theory (DFT), and aripiprazole interactions with imprinted cavities were simulated with molecular mechanics (MM) and molecular dynamics (MD). MIP-aripiprazole film-coated electrodes were used as extended gates for selective determination of aripiprazole with the extended-gate field-effect transistor (EG-FET) chemosensor. The linear dynamic concentration range was 30-300 pM, and the limit of detection was 22 fM. An apparent imprinting factor of the MIP-1 was IF = 4.95. The devised chemosensor was highly selective to glucose, urea, and creatinine interferences. The chemosensor was successfully applied for aripiprazole determination in human plasma. The results obtained were compared to those of the validated HPLC-MS method.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Aripiprazol , Carbazoles , Humanos , Estrés Oxidativo , Tiofenos
10.
Sensors (Basel) ; 20(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825278

RESUMEN

Liquid crystal-based sensors offer the advantage of high sensitivity at a low cost. However, they often lack selectivity altogether or require costly and unstable biomaterials to impart this selectivity. To incur this selectivity, we herein integrated a molecularly imprinted polymer (MIP) film recognition unit with a liquid crystal (LC) in an optical cell transducer. We tested the resulting chemosensor for protein determination. We examined two different LCs, each with a different optical birefringence. That way, we revealed the influence of that parameter on the sensitivity of the (human serum albumin)-templated (MIP-HSA) LC chemosensor. The response of this chemosensor with the (MIP-HSA)-recognizing film was linear from 2.2 to 15.2 µM HSA, with a limit of detection of 2.2 µM. These values are sufficient to use the devised chemosensor for HSA determination in biological samples. Importantly, the imprinting factor (IF) of this chemosensor was appreciable, reaching IF = 3.7. This IF value indicated the predominant binding of the HSA through specific rather than nonspecific interactions with the MIP.


Asunto(s)
Cristales Líquidos , Polímeros Impresos Molecularmente , Proteínas/análisis , Birrefringencia , Humanos , Impresión Molecular , Albúmina Sérica Humana
11.
ACS Sens ; 5(1): 118-126, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31845570

RESUMEN

Homogenous nanostructuration of molecularly imprinted polymer (MIP) films for follicle-stimulating hormone (FSH)-sensing was achieved by using optimized colloidal crystals as a hard mold. Introduction of a heating step after assembling colloidal crystals of silica beads promoted their adhesion. Thus, precise assembling of beads was not disturbed during further multisteps of surface imprinting, and crack-free hexagonal packing was maintained. Scanning electron microscopy imaging confirmed hexagonal packing of silica colloidal crystals as well as homogenous nanostructuration in MIP films. FSH immobilization over silica beads and later its derivatization with electroactive functional monomers was confirmed by X-ray photoelectron spectroscopy analysis. The nanostructured molecular recognition films prepared in this way were combined with an electrochemical transducer in order to design a capacitive impedimetry-based chemosensing system. It was tested for the determination of FSH in the range from 0.1 fM to 100 pM in 10 mM 2-(N-morpholino) ethane sulfonic acid buffer (pH = 4.2). The detection limit of the chemosensor was 0.1 fM, showing a high selectivity with respect to common protein interferences as well as other protein hormones of the gonadotropin family.


Asunto(s)
Técnicas Biosensibles/métodos , Hormona Folículo Estimulante/química , Impresión Molecular/métodos , Polímeros/química , Humanos
12.
Anal Chem ; 91(12): 7546-7553, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31124353

RESUMEN

The "gate effect" mechanism for conductive molecularly imprinted polymer (MIP) film coated electrodes was investigated in detail. It was demonstrated that the decrease of the DPV signal for the Fe(CN)64-/Fe(CN)63- redox probe with the increase of the p-synephrine target analyte concentration in solution at the polythiophene MIP-film coated electrode did not originate from swelling or shrinking of the MIP film, as it was previously postulated, but from changes in the electrochemical process kinetics. The MIP-film coated electrode was examined with cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and surface plasmon resonance (SPR). The MIP-film thickness in the absence and in the presence of the p-synephrine analyte was examined with in situ AFM imaging. Moreover, it was demonstrated that doping of the MIP film was not affected by p-synephrine binding in MIP-film molecular cavities. It was concluded that the "gate effect" was most likely caused by changes in radical cation (polaron) mobility in the film.

13.
Anal Chem ; 91(7): 4537-4543, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30848126

RESUMEN

A molecularly imprinted polymer (MIP) recognition system was devised for selective determination of an immunogenic gluten octamer epitope, PQQPFPQQ. For that, a thin MIP film was devised, guided by density functional theory calculations, and then synthesized to become the chemosensor recognition unit. Bis(bithiophene)-based cross-linking and functional monomers were used for this synthesis. An extended-gate field-effect transistor (EG-FET) was used as the transduction unit. The EG-FET gate surface was coated with the PQQPFPQQ-templated MIP film, by electropolymerization, to result in a complete chemosensor. X-ray photoelectron spectroscopy analysis confirmed the presence of the PQQPFPQQ epitope, and its removal from the MIP film. The chemosensor selectively discriminated between the octamer analyte and another peptide of the same number of amino acids but with two of them mismatched (PQQQFPPQ). The chemosensor was validated with respect to both the PQQPFPQQ analyte and a real gluten extract from semolina flour. It was capable to determine PQQPFPQQ in the concentration range of 0.5-45 ppm with the limit of detection (LOD) = 0.11 ppm. Moreover, it was capable of determining gluten in real samples in the concentration range of 4-25 ppm with LOD = 4 ppm, which is a value sufficient for discriminating between gluten-free and non-gluten-free food products. The gluten content in semolina flour determined with the chemosensor well correlated with that determined with a commercial ELISA gluten kit. The Langmuir, Freundlich, and Langmuir-Freundlich isotherms were fitted to the epitope sorption data. The sorption parameters determined from these isotherms indicated that the imprinted cavities were quite homogeneous and that the epitope analyte was chemisorbed in them.


Asunto(s)
Glútenes/análisis , Impresión Molecular/métodos , Polímeros/química , Transistores Electrónicos , Secuencia de Aminoácidos , Electrodos , Ensayo de Inmunoadsorción Enzimática , Epítopos/análisis , Epítopos/química , Harina/análisis , Glútenes/química , Oro/química , Límite de Detección
14.
ACS Appl Mater Interfaces ; 11(9): 9265-9276, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30714713

RESUMEN

We present an improved approach for the preparation of highly selective and homogeneous molecular cavities in molecularly imprinted polymers (MIPs) via the combination of surface imprinting and semi-covalent imprinting. Toward that, first, a colloidal crystal mold was prepared via the Langmuir-Blodgett (LB) technique. Then, human chorionic gonadotropin (hCG) template protein was immobilized on the colloidal crystal mold. Later, hCG derivatization with electroactive functional monomers via amide chemistry was performed. In a final step, optimized potentiostatic polymerization of 2,3'-bithiophene enabled depositing an MIP film as the macroporous structure. This synergistic strategy resulted in the formation of molecularly imprinted cavities exclusively on the internal surface of the macropores, which were accessible after dissolution of silica molds. The recognition of hCG by the macroporous MIP film was transduced with the help of electric transducers, namely, extended-gate field-effect transistors (EG-FET) and capacitive impedimetry (CI). These readout strategies offered the ability to create chemosensors for the label-free determination of the hCG hormone. Other than the simple confirmation of pregnancy, hCG assay is a common tool for the diagnosis and follow-up of ectopic pregnancy or trophoblast tumors. Concentration measurements with these EG-FET and CI-based devices allowed real-time measurements of hCG in the range of 0.8-50  and 0.17-2.0 fM, respectively, in 10 mM carbonate buffer (pH = 10). Moreover, the selectivity of chemosensors with respect to protein interferences was very high.


Asunto(s)
Gonadotropina Coriónica/análisis , Técnicas Electroquímicas/métodos , Impresión Molecular , Conductividad Eléctrica , Técnicas Electroquímicas/instrumentación , Galvanoplastia , Oro/química , Humanos , Proteínas Inmovilizadas/química , Polimerizacion , Polímeros/química , Porosidad , Reproducibilidad de los Resultados , Propiedades de Superficie , Tiofenos/química
15.
Biosens Bioelectron ; 100: 251-258, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28934696

RESUMEN

By means of molecular imprinting of a conducting polymer, molecular cavities selective for oxytocin nonapeptide, an autism biomarker, were designed. Embedding of the oxytocin template, and then its extracting from the molecularly imprinted polymer (MIP) was confirmed by the XPS analysis. AFM imaging of the MIP film surface indicated changes in mechanical properties of the film after template extraction. The MIP synthetic receptor was deposited by potentiodynamic electropolymerization as a thin film on an Au film electrode in an electrochemical miniaturized microfluidic cell. The use of this cell allowed to shorten analysis time and to decrease the sample volume. The linear dynamic concentration range extended from 0.06 to 1mM with the limit of detection of 60µM (S/N = 3). Advantageously, sensitivity of the diagnostic microfluidic platform devised for oxytocin determination in both synthetic serum samples and in aqueous solutions was similar and, moreover, it was selective to common interferences, such as oxytocin analogs and potential metabolites.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Impresión Molecular/métodos , Oxitocina/sangre , Polímeros/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Diseño de Equipo , Oro/química , Humanos , Límite de Detección , Técnicas Analíticas Microfluídicas/métodos , Oxitocina/análisis
16.
Biosens Bioelectron ; 102: 17-26, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29101784

RESUMEN

Molecularly imprinted polymers (MIPs) are tailor made recognition materials that can mimic biological receptors. If used as recognition units for chemosensors fabrication, they outperform natural receptors with their durability, chemical stability, and low production costs. Novel techniques of MIP deposition as thin films, surface development, and introduction of additional properties are very much demanded in terms of selective and sensitive chemosensors fabrication. Therefore, in recent years a particular attention has been paid to syntheses of nanostructured MIP films and MIP nanoparticles. The present brief review surveys novel achievements in the field of MIP nanostructures and their application for determination of protein analytes.


Asunto(s)
Técnicas Biosensibles/métodos , Impresión Molecular/métodos , Nanoestructuras/química , Polímeros/química , Proteínas/análisis , Animales , Humanos , Proteínas/aislamiento & purificación
17.
Biosens Bioelectron ; 94: 155-161, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28284074

RESUMEN

Nanostructured artificial receptor materials with unprecedented hierarchical structure for determination of human serum albumin (HSA) are designed and fabricated. For that purpose a new hierarchical template is prepared. This template allowed for simultaneous structural control of the deposited molecularly imprinted polymer (MIP) film on three length scales. A colloidal crystal templating with optimized electrochemical polymerization of 2,3'-bithiophene enables deposition of an MIP film in the form of an inverse opal. Thickness of the deposited polymer film is precisely controlled with the number of current oscillations during potentiostatic deposition of the imprinted poly(2,3'-bithiophene) film. Prior immobilization of HSA on the colloidal crystal allows formation of molecularly imprinted cavities exclusively on the internal surface of the pores. Furthermore, all binding sites are located on the surface of the imprinted cavities at locations corresponding to positions of functional groups present on the surface of HSA molecules due to prior derivatization of HSA molecules with appropriate functional monomers. This synergistic strategy results in a material with superior recognition performance. Integration of the MIP film as a recognition unit with a sensitive extended-gate field-effect transistor (EG-FET) transducer leads to highly selective HSA determination in the femtomolar concentration range.


Asunto(s)
Técnicas Biosensibles/métodos , Impresión Molecular , Albúmina Sérica Humana/aislamiento & purificación , Humanos , Polímeros/química , Tiofenos/química
18.
Prep Biochem Biotechnol ; 47(7): 673-677, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28277945

RESUMEN

We have proposed a novel assay for lipases and esterases activity determination based on potentiometry with ion-selective electrodes (ISEs). Enzyme preparations, obtained from the living cells, are complex mixtures of various proteins, short peptides, lipids, carbohydrates, and other compounds. The most commonly used quantitative methods in enzyme studies are based on spectrophotometric or spectroflourimetric protocols which has significant limitations. They are not valid for samples that are turbid or strongly colored. To overcome those drawbacks we have proposed an assay based on potentiometry with ISEs for lipases and esterases activity determination. This electrochemical methodology represents an attractive tool for enzyme analysis, because of its low detection limit, independence from sample volume and from sample turbidity. The usefulness of this assay has been proven by the determination of the activity of various raw enzymes "acetone powders" isolated from animal tissues. Moreover, activities of fractions obtained during purification of one of those raw biocatalysts were also determined that way. The reliability of determination enzyme activity with ISE assay was proven by comparison with a classical spectrophotometric method.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Pruebas de Enzimas/instrumentación , Esterasas/metabolismo , Electrodos de Iones Selectos , Lipasa/metabolismo , Membranas Artificiales , Animales , Bovinos , Pollos , Diseño de Equipo , Esterasas/análisis , Lipasa/análisis , Polímeros/química , Porcinos
19.
Chemistry ; 23(8): 1942-1949, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28060413

RESUMEN

A molecularly imprinted polymer (MIP)-based chemosensor for the selective determination of a chosen toxin, N-nitroso-l-proline (Pro-NO), was devised and fabricated. By means of DFT, the structure of the pre-polymerization (functional monomer)-template complex was modeled. This complex was then potentiodynamically electropolymerized in the presence of cross-linking monomer to form a MIP-Pro-NO thin film. Next, the Pro-NO template was extracted from MIP-Pro-NO with 0.1 m NaOH. Piezoelectric microgravimetry (PM) on an electrochemical quartz crystal microbalance and electrochemical (differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS)) techniques were used to transduce binding of Pro-NO to molecular cavities of the MIP-Pro-NO. With DPV and EIS chemosensing, the limits of detection (LODs) were about 80.9 and 36.9 nM Pro-NO, respectively; and the selectivity coefficients for urea, glucose, creatinine, and adrenalin interferences were 6.6, 13.2, 2.1, and 2.0, respectively, with DPV as well as 2.3, 2.0, 3.3, and 2.5, respectively, with EIS. With PM under flow injection analysis conditions, the LOD was 10 µm Pro-NO. The MIP-Pro-NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro-NO in protein-providing food products.


Asunto(s)
Técnicas Electroquímicas , Contaminación de Alimentos/análisis , Impresión Molecular/métodos , Nitrosaminas/análisis , Creatinina/química , Espectroscopía Dieléctrica , Epinefrina/química , Ferrocianuros/química , Glucosa/química , Límite de Detección , Nitrosaminas/química , Polimerizacion , Polímeros/química , Tecnicas de Microbalanza del Cristal de Cuarzo
20.
J Mater Chem B ; 5(31): 6292-6299, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32264445

RESUMEN

Molecular imprinting in polymers leads, among others, to synthetic receptors of high selectivity, comparable to that of their biological counterparts. Deposition of a thin non-porous molecularly imprinted polymer (MIP) film directly on a transducer surface enables fabrication of chemosensors for various health relevant biocompounds. However, the sensitivity of a chemosensor with such an MIP film as the recognition unit is limited, mostly because of slow analyte diffusion through this film. Herein, a simple procedure was developed to enhance, in a controlled way, the active surface area of an l-arabitol imprinted polymer film. For this, a macroporous MIP-(l-arabitol) film was synthesized and simultaneously deposited on a gold electrode of a quartz crystal resonator transducer by potentiodynamic electropolymerization. This large surface area film effectively enhanced analytical signals of mass changes at a quartz crystal microbalance. Hence, the l-arabitol limit of quantification was ∼16-fold better than that of the corresponding non-porous MIP film of the same mass.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA