Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Diet Suppl ; : 1-16, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221704

RESUMEN

In recent decades, a new health paradigm emerged which increasingly places diet and nutrition at the center of citizens' healthcare. The resulting evolution of the food market has prompted country governments to adapt their regulatory frameworks to ensure product safety and preserve the health of citizens. Dietary supplements (DS) are products which are increasingly occupying a significant market share in Western countries, contributing to meeting the nutritional and physiological needs of a large portion of the global population. Food supplements must be safe for use by the final consumer who has access to the global market, but currently they are framed by a different legislation worldwide. This search aimed of comparing the legislative frameworks currently in force in the European Union (EU) and in the United States (USA), the two main markets in which DS are purchased, to focus on the strengths, similarities and possible shortcomings, against the backdrop of a global market which often transcends the regulatory barriers of individual countries. Both in the EU and the USA, food supplements are governed by specific regulations to ensure their safety and quality. However, the regulatory approaches differ sharply in some cases. It is expected that more and more operators will launch new DS in Western markets. As a result, it is crucial for competent authorities in food safety to deepen and develop additional regulatory tools aimed to control and safeguard the DS market.


The resulting evolution of the food market has prompted country governments to adapt their regulatory frameworks to ensure food safety and safeguard the health of citizensFood supplements must be safe for use by the final consumer who has access to the global market, but currently they are framed by a different legislation worldwideBoth in the EU and the USA, the two main markets in which DS are purchased, food supplements are governed by specific regulations to ensure their safetyNevertheless, the regulatory approaches differ sharply in some casesAs a result, it is crucial for competent authorities to develop additional regulatory tools aimed to control and safeguard the DS market.

2.
Eur J Clin Nutr ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127841

RESUMEN

BACKGROUND: Glut-1 deficiency Syndrome (GLUT-1 DS) is a rare disease caused by a mutation in the SLC2A1 gene that codes for the glucose transporter protein GLUT-1 DS. Currently, there is no indicated drug therapy for this condition and ketogenic diet (KD) is the most effective remedy to treat it. OBJECTIVE: The objective of this study was to review the published literature that evaluated the effectiveness of KD in the dietary management of GLUT-1 DS syndrome, describing the state-of-the-art the treatment pathway for patients with GLUT-1 DS syndrome in light of the current European regulatory framework within the National Health Services. METHODS: The literature search was carried out on September 10, 2023, and all studies conducted in humans diagnosed with GLUT-1 deficiency syndrome and treated with KD were included. RESULTS: A total of 156 scientific papers have been extracted. Applying the exclusion criteria, 38 articles have been considered eligible. In 29 out of 38 studies, the main outcome for determining the efficacy of KD was the measurement of the number of epileptic seizures, demonstrating that patients treated with KD experienced improvements with a clear reduction in the number of epileptic attacks. Currently, in the European Union, only one country provides full reimbursement by the national health system for KD. DISCUSSION: Although they are crucial for the treatment of GLUT-1 DS, according with current food regulations, KD are not evaluated on the basis of an unambiguous efficacy result, but only on the basis of safety. As a result, it is desirable to carry out clinical studies in the coming years based on the determination of efficacy in target populations, also in view of the marketing of these products on the European market.

3.
Curr Neuropharmacol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39041263

RESUMEN

Ghrelin is a gut peptide hormone associated with feeding behavior and energy homeostasis. Acylated ghrelin binds to the growth hormone secretagogue receptor 1a subtype (GHS-R1a) in the hippocampus, leading to GH release from the anterior pituitary. However, in recent years, ghrelin and its receptor have also been implicated in other processes, including the regulation of cardiomyocyte function, muscle trophism, and bone metabolism. Moreover, GHS-R1a is distributed throughout the brain and is expressed in brain areas that regulate the stress response and emotional behavior. Consistently, a growing body of evidence supports the role of ghrelin in regulating stress response and mood. Stress has consistently been shown to increase ghrelin levels, and despite some inconsistencies, both human and rodent studies suggested antidepressant effects of ghrelin. Nevertheless, the precise mechanism by which ghrelin influences stress response and mood remains largely unknown. Intriguingly, ghrelin and GHS-R1a were consistently reported to exert anti-inflammatory, antioxidant, and neurotrophic effects both in vivo and in vitro, although this has never been directly assessed in relation to psychopathology. In the present review we will discuss available literature linking ghrelin with the stress response and depressive-like behavior in animal models as well as evidence describing the interplay between ghrelin and neuroinflammation/oxidative stress. Although further studies are required to understand the mechanisms involved in the action of ghrelin on mood, we hypothesize that the antiinflammatory and anti-oxidative properties of ghrelin may give a key contribution.

4.
Biomed Pharmacother ; 178: 117191, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079263

RESUMEN

Casein kinase II (CK2) has recently emerged as a pivotal mediator in the propagation of inflammation across various diseases. Nevertheless, its role in the pathogenesis of sepsis remains unexplored. Here, we investigated the involvement of CK2 in sepsis progression and the potential beneficial effects of silmitasertib, a selective and potent CK2α inhibitor, currently under clinical trials for COVID-19 and cancer. Sepsis was induced by caecal ligation and puncture (CLP) in four-month-old C57BL/6OlaHsd mice. One hour after the CLP/Sham procedure, animals were assigned to receive silmitasertib (50 mg/kg/i.v.) or vehicle. Plasma/organs were collected at 24 h for analysis. A second set of experiments was performed for survival rate over 120 h. Septic mice developed multiorgan failure, including renal dysfunction due to hypoperfusion (reduced renal blood flow) and increased plasma levels of creatinine. Renal derangements were associated with local overactivation of CK2, and downstream activation of the NF-ĸB-iNOS-NO axis, paralleled by a systemic cytokine storm. Interestingly, all markers of injury/inflammation were mitigated following silmitasertib administration. Additionally, when compared to sham-operated mice, sepsis led to vascular hyporesponsiveness due to an aberrant systemic and local release of NO. Silmitasertib restored sepsis-induced vascular abnormalities. Overall, these pharmacological effects of silmitasertib significantly reduced sepsis mortality. Our findings reveal, for the first time, the potential benefits of a selective and potent CK2 inhibitor to counteract sepsis-induced hyperinflammatory storm, vasoplegia, and ultimately prolonging the survival of septic mice, thus suggesting a pivotal role of CK2 in sepsis and silmitasertib as a novel powerful pharmacological tool for drug repurposing in sepsis.


Asunto(s)
Quinasa de la Caseína II , Sepsis , Animales , Masculino , Ratones , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/tratamiento farmacológico , Insuficiencia Multiorgánica/prevención & control , Naftiridinas , Fenazinas , Inhibidores de Proteínas Quinasas/farmacología , Pteridinas/farmacología , Sepsis/tratamiento farmacológico , Sepsis/complicaciones
6.
Med Res Rev ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808959

RESUMEN

5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38575792

RESUMEN

RATIONALE: In 2018, the International Classification of Diseases (ICD-11) classified Gaming Disorder (GD) as a mental disorder. GD mainly occurs among adolescents, who, after developing addiction, show psychopathological traits, such as social anxiety, depression, social isolation, and attention deficit. However, the different studies conducted in humans so far show several limitations, such as the lack of demographic heterogeneity and equal representation of age, differences in the type of game and in the follow-up period. Furthermore, at present, no animal models specific to GD are available. OBJECTIVES: To address the lack of an experimental model for GD, in the present work, we proposed a new GD rat model to investigate some peculiar tracts of the disorder. METHODS: Two-month-old Wistar Kyoto rats, both males and females, were subject to a five-week training with a new innovative touch-screen platform. After five weeks of training, rats were assessed for: (a) their attachment to the play under several conditions, (b) their hyperactivity during gaming, and (c) the maintenance of these conditions after a period of game pause and reward interruption. After sacrifice, using immunohistochemistry techniques, the immunoreactivity of c-Fos (a marker of neuronal activity) was analyzed to study different neural areas. RESULTS: After the training, the rats subjected to GD protocol developed GD-related traits (e.g., hyperactivity, loss control), and the behavioral phenotype was maintained consistently over time. These aspects were completely absent in the control groups. Lastly, the analysis of c-Fos immunoreactivity in prelimbic cortex (PrL), orbitofrontal cortex (OFC), nucleus Accumbens, amygdala and bed nucleus of stria terminalis (BNST) highlighted significant alterations in the GD groups compared to controls, suggesting modifications in neural activity related to the development of the GD phenotype. CONCLUSIONS: The proposal of a new GD rat model could represent an innovative tool to investigate, in both sexes, the behavioral and neurobiological features of this disorder, the possible role of external factors in the predisposition and susceptibility and the development of new pharmacological therapies.

8.
Antioxidants (Basel) ; 13(4)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38671836

RESUMEN

Obesity has a great impact on adipose tissue biology, based on its function as a master regulator of energy balance. Brown adipose tissue (BAT) undergoes remodeling, and its activity declines in obese subjects due to a whitening process. The anti-obesity properties of fruit extracts have been reported. The effects of tart cherry against oxidative stress, inflammation, and the whitening process in the BAT of obese rats were investigated. Intrascapular BAT (iBAT) alterations and effects of Prunus cerasus L. were debated in rats fed for 17 weeks with a high-fat diet (DIO), in DIO supplemented with seed powder (DS), and with seed powder plus the juice (DJS) of tart cherry compared to CHOW rats fed with a normo-caloric diet. iBAT histologic observations revealed a whitening process in DIO rats that was reduced in the DS and DJS groups. A modulation of uncoupling protein-1 (UCP-1) protein and gene expression specifically were detected in the obese phenotype. An upregulation of UCP-1 and related thermogenic genes after tart cherry intake was detected compared to the DIO group. Metabolic adjustment, endoplasmic reticulum stress, protein carbonylation, and the inflammatory microenvironment in the iBAT were reported in DIO rats. The analysis demonstrated an iBAT modulation that tart cherry promoted. In addition to our previous results, these data confirm the protective impact of tart cherry consumption on obesity.

9.
Int J Eat Disord ; 57(7): 1433-1446, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38650547

RESUMEN

OBJECTIVE: Binge-eating disorder is an eating disorder characterized by recurrent binge-eating episodes, during which individuals consume excessive amounts of highly palatable food (HPF) in a short time. This study investigates the intricate relationship between repeated binge-eating episode and the transcriptional regulation of two key genes, adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R), in selected brain regions of rats. METHOD: Binge-like eating behavior on HPF was induced through the combination of food restrictions and frustration stress (15 min exposure to HPF without access to it) in female rats, compared to control rats subjected to only restriction or only stress or none of these two conditions. After chronic binge-eating episodes, nucleic acids were extracted from different brain regions, and gene expression levels were assessed through real-time quantitative PCR. The methylation pattern on genes' promoters was investigated using pyrosequencing. RESULTS: The analysis revealed A2AAR upregulation in the amygdala and in the ventral tegmental area (VTA), and D2R downregulation in the nucleus accumbens in binge-eating rats. Concurrently, site-specific DNA methylation alterations at gene promoters were identified in the VTA for A2AAR and in the amygdala and caudate putamen for D2R. DISCUSSION: The alterations on A2AAR and D2R genes regulation highlight the significance of epigenetic mechanisms in the etiology of binge-eating behavior, and underscore the potential for targeted therapeutic interventions, to prevent the development of this maladaptive feeding behavior. These findings provide valuable insights for future research in the field of eating disorders. PUBLIC SIGNIFICANCE: Using an animal model with face, construct, and predictive validity, in which cycles of food restriction and frustration stress evoke binge-eating behavior, we highlight the significance of epigenetic mechanisms on adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R) genes regulation. They could represent new potential targets for the pharmacological management of eating disorders characterized by this maladaptive feeding behavior.


Asunto(s)
Trastorno por Atracón , Bulimia , Receptor de Adenosina A2A , Receptores de Dopamina D2 , Recompensa , Animales , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Femenino , Ratas , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Bulimia/metabolismo , Bulimia/genética , Trastorno por Atracón/genética , Trastorno por Atracón/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Metilación de ADN , Área Tegmental Ventral/metabolismo , Conducta Alimentaria , Núcleo Accumbens/metabolismo , Ratas Sprague-Dawley
10.
Int J Eat Disord ; 57(7): 1418-1432, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456603

RESUMEN

OBJECTIVE: Test the efficacy of the selective orexin 1 receptor (OX1R) antagonist (SO1RA) nivasorexant in an animal model of binge-eating disorder (BED) and study its dose-response relationship considering free brain concentrations and calculated OX1R occupancy. Compare nivasorexant's profile to that of other, structurally diverse SO1RAs. Gain understanding of potential changes in orexin-A (OXA) neuropeptide and deltaFosB (ΔFosB) protein expression possibly underlying the development of the binge-eating phenotype in the rat model used. METHOD: Binge-like eating of highly palatable food (HPF) in rats was induced through priming by intermittent, repeated periods of dieting and access to HPF, followed by an additional challenge with acute stress. Effects of nivasorexant were compared to the SO1RAs ACT-335827 and IDOR-1104-2408. OXA expression in neurons and neuronal fibers as well as ΔFosB and OXA-ΔFosB co-expression was studied in relevant brain regions using immuno- or immunofluorescent histochemistry. RESULTS: All SO1RAs dose-dependently reduced binge-like eating with effect sizes comparable to the positive control topiramate, at unbound drug concentrations selectively blocking brain OX1Rs. Nivasorexant's efficacy was maintained upon chronic dosing and under conditions involving more frequent stress exposure. Priming for binge-like eating or nivasorexant treatment resulted in only minor changes in OXA or ΔFosB expression in few brain areas. DISCUSSION: Selective OX1R blockade reduced binge-like eating in rats. Neither ΔFosB nor OXA expression proved to be a useful classifier for their binge-eating phenotype. The current results formed the basis for a clinical phase II trial in BED, in which nivasorexant was unfortunately not efficacious compared with placebo. PUBLIC SIGNIFICANCE: Nivasorexant is a new investigational drug for the treatment of binge-eating disorder (BED). It underwent clinical testing in a phase II proof of concept trial in humans but was not efficacious compared with placebo. The current manuscript investigated the drug's efficacy in reducing binge-like eating behavior of a highly palatable sweet and fat diet in a rat model of BED, which initially laid the foundation for the clinical trial.


Asunto(s)
Trastorno por Atracón , Modelos Animales de Enfermedad , Antagonistas de los Receptores de Orexina , Receptores de Orexina , Animales , Antagonistas de los Receptores de Orexina/farmacología , Ratas , Masculino , Trastorno por Atracón/tratamiento farmacológico , Receptores de Orexina/metabolismo , Ratas Sprague-Dawley , Orexinas/metabolismo
11.
Nutrients ; 16(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38398877

RESUMEN

Advanced glycation end products (AGEs) exert a key pathogenic role in the development of obesity and insulin resistance. Thanks to its abundance in bioactive compounds, the microalga Arthrospira platensis (spirulina, SP) is proposed as a nutritional supplement. Here, we investigated the potential anti-glycating properties of SP enriched with zinc (Zn-SP) and the following impact on diet-induced metabolic derangements. Thirty male C57Bl6 mice were fed a standard diet (SD) or a high-fat high-sugar diet (HFHS) for 12 weeks, and a subgroup of HFHS mice received 350 mg/kg Zn-SP three times a week. A HFHS diet induced obesity and glucose intolerance and increased plasma levels of pro-inflammatory cytokines and transaminases. Zn-SP administration restored glucose homeostasis and reduced hepatic dysfunction and systemic inflammation. In the liver of HFHS mice, a robust accumulation of AGEs was detected, paralleled by increased expression of the main AGE receptor (RAGE) and depletion of glyoxalase-1, whereas Zn-SP administration efficiently prevented these alterations reducing local pro-inflammatory responses. 16S rRNA gene profiling of feces and ileum content revealed altered bacterial community structure in HFHS mice compared to both SD and HFHS + Zn-SP groups. Overall, our study demonstrates relevant anti-glycation properties of Zn-SP which contribute to preventing AGE production and/or stimulate AGE detoxification, leading to the improvement of diet-related dysbiosis and metabolic derangements.


Asunto(s)
Spirulina , Masculino , Ratones , Animales , Spirulina/química , Ratones Obesos , Zinc , ARN Ribosómico 16S , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad
12.
Nutrients ; 15(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37892524

RESUMEN

Acylethanolamides (NAEs) are bioactive lipids derived from diet fatty acids that modulate important homeostatic functions, including appetite, fatty acid synthesis, mitochondrial respiration, inflammation, and nociception. Among the naturally circulating NAEs, the pharmacology of those derived from either arachidonic acid (Anandamide), oleic acid (OEA), and palmitic acid (PEA) have been extensively characterized in diet-induced obesity. For the present work, we extended those studies to linoleoylethanolamide (LEA), one of the most abundant NAEs found not only in plasma and body tissues but also in foods such as cereals. In our initial study, circulating concentrations of LEA were found to be elevated in overweight humans (body mass index (BMI, Kg/m2) > 25) recruited from a representative population from the south of Spain, together with AEA and the endocannabinoid 2-Arachidonoyl glycerol (2-AG). In this population, LEA concentrations correlated with the circulating levels of cholesterol and triglycerides. In order to gain insight into the pharmacology of LEA, we administered it for 14 days (10 mg/kg i.p. daily) to obese male Sprague Dawley rats receiving a cafeteria diet or a standard chow diet for 12 consecutive weeks. LEA treatment resulted in weight loss and a reduction in circulating triglycerides, cholesterol, and inflammatory markers such as Il-6 and Tnf-alpha. In addition, LEA reduced plasma transaminases and enhanced acetyl-CoA-oxidase (Acox) and Uncoupling protein-2 (Ucp2) expression in the liver of the HFD-fed animals. Although the liver steatosis induced by the HFD was not reversed by LEA, the overall data suggest that LEA contributes to the homeostatic signals set in place in response to diet-induced obesity, potentially contributing with OEA to improve lipid metabolism after high fat intake. The anti-inflammatory response associated with its administration suggests its potential for use as a nutrient supplement in non-alcoholic steatohepatitis.


Asunto(s)
Dislipidemias , Enfermedad del Hígado Graso no Alcohólico , Ratas , Humanos , Animales , Masculino , Ratas Sprague-Dawley , Obesidad/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Dieta Alta en Grasa/efectos adversos , Aumento de Peso , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Triglicéridos , Colesterol/metabolismo , Dislipidemias/metabolismo , Ácido Oléico/uso terapéutico
13.
Artículo en Inglés | MEDLINE | ID: mdl-37611651

RESUMEN

Helplessness is a dysfunctional coping response to stressors associated with different psychiatric conditions. The present study tested the hypothesis that early and adult adversities cumulate to produce helplessness depending on the genotype (3-hit hypothesis of psychopathology). To this aim, we evaluated whether Chronic Unpredictable Stress (CUS) differently affected coping and mesoaccumbens dopamine (DA) responses to stress challenge by adult mice of the C57BL/6J (B6) and DBA/2J (D2) inbred strains depending on early life experience (Repeated Cross Fostering, RCF). Three weeks of CUS increased the helplessness expressed in the Forced Swimming Test (FST) and the Tail Suspension Test by RCF-exposed female mice of the D2 strain. Moreover, female D2 mice with both RCF and CUS experiences showed inhibition of the stress-induced extracellular DA outflow in the Nucleus Accumbens, as measured by in vivo microdialysis, during and after FST. RCF-exposed B6 mice, instead, showed reduced helplessness and increased mesoaccumbens DA release. The present results support genotype-dependent additive effects of early experiences and adult adversities on behavioral and neural responses to stress by female mice. To our knowledge, this is the first report of a 3-hit effect in an animal model. Finally, the comparative analyses of behavioral and neural phenotypes expressed by B6 and D2 mice suggest some translationally relevant hypotheses of genetic risk factors for psychiatric disorders.


Asunto(s)
Dopamina , Femenino , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Modelos Animales de Enfermedad , Genotipo , Fenotipo
14.
Proc Natl Acad Sci U S A ; 120(32): e2301730120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523544

RESUMEN

The brain employs distinct circuitries to encode positive and negative valence stimuli, and dysfunctions of these neuronal circuits have a key role in the etiopathogenesis of many psychiatric disorders. The Dorsal Raphè Nucleus (DRN) is involved in various behaviors and drives the emotional response to rewarding and aversive experiences. Whether specific subpopulations of neurons within the DRN encode these behaviors with different valence is still unknown. Notably, microRNA expression in the mammalian brain is characterized by tissue and neuronal specificity, suggesting that it might play a role in cell and circuit functionality. However, this specificity has not been fully exploited. Here, we demonstrate that microRNA-34a (miR-34a) is selectively expressed in a subpopulation of GABAergic neurons of the ventrolateral DRN. Moreover, we report that acute exposure to both aversive (restraint stress) and rewarding (chocolate) stimuli reduces GABA release in the DRN, an effect prevented by the inactivation of DRN miR-34a or its genetic deletion in GABAergic neurons in aversive but not rewarding conditions. Finally, miR-34a inhibition selectively reduced passive coping with severe stressors. These data support a role of miR-34a in regulating GABAergic neurotransmitter activity and behavior in a context-dependent manner and suggest that microRNAs could represent a functional signature of specific neuronal subpopulations with valence-specific activity in the brain.


Asunto(s)
Núcleo Dorsal del Rafe , MicroARNs , Humanos , Animales , Núcleo Dorsal del Rafe/metabolismo , Neuronas GABAérgicas/metabolismo , MicroARNs/metabolismo , Mamíferos
15.
Pharmacol Res ; 195: 106875, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37517560

RESUMEN

Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.


Asunto(s)
Bulimia , Neuropéptidos , Hormonas Peptídicas , Animales , Conducta Alimentaria , Neuropéptidos/uso terapéutico , Obesidad/tratamiento farmacológico , Bulimia/tratamiento farmacológico
16.
Microorganisms ; 11(4)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37110347

RESUMEN

The irregular lifestyle of airline crew members, wide/adverse job-related exposures, and the impact of temporary hypoxia on gut microbiota well-being have increased concern about the daily recommended dose of certain nutrients among flight crew. The aim of this study was to determine if daily consumption of a SYNBIO® probiotics-elderberry extract supplement (ACTIVE) may contribute to the well-being of flight attendants. Forty healthy crew members enrolled in a double-blind, randomized, placebo-controlled study consumed one ACTIVE capsule/day or placebo for 30 days. Bowel well-being, health-related quality of life, and gastrointestinal tolerance were assessed by validated questionnaires. Saliva and fecal samples were analyzed to determine secretory immunoglobulin-A (sIgA) levels and to characterize gut microbiota composition, respectively. ACTIVE subjects presented a physiological improvement and a statistically significant higher Psychological General Well-Being Index (PGWBI) global score compared to PLACEBO subjects. The ACTIVE subjects showed significantly increased levels of lactobacilli and bifidobacteria compared to the PLACEBO group, while a significant increase in lactobacilli and a significant reduction in Enterobacteriaceae were registered when compared with the beginning of supplementation, confirming the persistence of probiotics in the gastrointestinal tract and the direct antagonism and competitive exclusion effects. Additionally, sIgA levels were significantly higher in the ACTIVE group compared to the baseline and to the PLACEBO group at the end of supplementation. The ACTIVE supplementation might be beneficial to airline crew members, improving their physiological state, their immune defenses, and the strength and efficiency of their gastrointestinal tract when responding to stressful conditions.

17.
Med Res Rev ; 43(5): 1607-1667, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37036052

RESUMEN

Orexin-A and orexin-B, also named hypocretin-1 and hypocretin-2, are two hypothalamic neuropeptides highly conserved across mammalian species. Their effects are mediated by two distinct G protein-coupled receptors, namely orexin receptor type 1 (OX1-R) and type 2 (OX2-R), which share 64% amino acid identity. Given the wide expression of OX-Rs in different central nervous system and peripheral areas and the several pathophysiological functions in which they are involved, including sleep-wake cycle regulation (mainly mediated by OX2-R), emotion, panic-like behaviors, anxiety/stress, food intake, and energy homeostasis (mainly mediated by OX1-R), both subtypes represent targets of interest for many structure-activity relationship (SAR) campaigns carried out by pharmaceutical companies and academies. However, before 2017 the research was predominantly directed towards dual-orexin ligands, and limited chemotypes were investigated. Analytical characterizations, including resolved structures for both OX1-R and OX2-R in complex with agonists and antagonists, have improved the understanding of the molecular basis of receptor recognition and are assets for medicinal chemists in the design of subtype-selective ligands. This review is focused on the medicinal chemistry aspects of small molecules acting as dual or subtype selective OX1-R/OX2-R agonists and antagonists belonging to different chemotypes and developed in the last years, including radiolabeled OX-R ligands for molecular imaging. Moreover, the pharmacological effects of the most studied ligands in different neuropsychiatric diseases, such as sleep, mood, substance use, and eating disorders, as well as pain, have been discussed. Poly-pharmacology applications and multitarget ligands have also been considered.


Asunto(s)
Neuropéptidos , Humanos , Animales , Receptores de Orexina/metabolismo , Ligandos , Orexinas , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Receptores Acoplados a Proteínas G , Sistema Nervioso Central , Receptores de Neuropéptido/metabolismo , Mamíferos/metabolismo
18.
Microorganisms ; 11(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36985374

RESUMEN

The physiological changes associated with ageing contribute to the incidence of diseases, morbidity, and mortality. For modern society, it is essential to find solutions to improve elderly people's health and quality of life. Among promising strategies, the PROBIOSENIOR project proposed a daily six-month supplementation with new probiotic functional foods and nutraceuticals. The aim of this work was to evaluate the modulating effects of the probiotic diet on inflammatory markers and nutritional status. Ninety-seven elderly volunteers were randomly assigned to either a placebo-diet group or a probiotic-diet group (SYNBIO®). Faeces, urine, and blood samples were collected before and after the supplementation to determine serum cytokines, biogenic amines, and inflammation markers. Comparing the results obtained before and after the intervention, probiotic supplementations significantly decreased the TNF-α circulating levels and significantly increased those of IGF-1. Biogenic-amine levels showed high variability, with significant variation only for histamine that decreased after the probiotic supplementation. The supplementation influenced the serum concentration of some crucial cytokines (IL-6, IL-8, and MIP-1α) that significantly decreased in the probiotic group. In addition, the Mini Nutritional Assessment questionnaire revealed that the probiotic-supplemented group had a significant improvement in nutritional status. In conclusion, the PROBIOSENIOR project demonstrated how SYNBIO® supplementation may positively influence some nutritional and inflammatory parameters in the elderly.

19.
Int J Eat Disord ; 56(6): 1098-1113, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36840536

RESUMEN

OBJECTIVE: Consumption of energy-dense palatable "comfort" food can alleviate stress and negative emotions, while abrupt withdrawal from a palatable diet can worsen these symptoms, causing difficulties with adherence to weight-loss diets. Currently, no pharmacological treatment is effective for obesity-related anxiety, so we investigated the endocannabinoid system (ECS), and specifically the fatty acid amide hydrolase (FAAH), as an interesting emerging target in this context because of its key role in the regulation of both energy homeostasis and emotional behavior. METHODS: Rats were subjected to exposure and subsequent abstinence from a palatable cafeteria diet. During abstinence period, rats were treated with the selective FAAH inhibitor PF-3845 (10 mg/kg; intraperitoneal administration every other day). RESULTS: Abstinent rats displayed an anxiogenic-like behavior and changes in the proteins of ECS signaling machinery in brain areas involved both in anxiety and food intake regulation. In particular, withdrawal caused a reduction of the expression of cannabinoid receptors in the nucleus accumbens and of enzymes diacylglycerol lipase alpha and monoacylglycerol lipase (MAGL) in the amygdala. Pharmacological inhibition of FAAH exerted an anxiolytic-like effect in abstinent animals and increased both MAGL expression in amygdala and CB2 expression in prefrontal cortex. DISCUSSION: Overall, our results suggest that emotional disturbances associated with dieting are coupled with region-specific alterations in the cerebral expression of the ECS and that the enhancement of the endocannabinoid signaling by FAAH inhibition might represent a novel pharmacological strategy for the treatment of anxiety related to abstinence from palatable food. PUBLIC SIGNIFICANCE: The present study focused on evaluating the role of the endocannabinoid system in modulating withdrawal from naturally rewarding activities that have an impact on mood, such as feeding. The variations observed in the emotional behavior of abstinent rats was linked to neuroadaptations of the ECS in specific brain areas.


Asunto(s)
Amidohidrolasas , Endocannabinoides , Ratas , Humanos , Animales , Amidohidrolasas/metabolismo , Ansiedad/tratamiento farmacológico
20.
Sci Adv ; 9(2): eadd8687, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36630511

RESUMEN

High relapse rate is a key feature of opioid addiction. In humans, abstinence is often voluntary due to negative consequences of opioid seeking. To mimic this human condition, we recently introduced a rat model of incubation of oxycodone craving after electric barrier-induced voluntary abstinence. Incubation of drug craving refers to time-dependent increases in drug seeking after cessation of drug self-administration. Here, we used the activity marker Fos, muscimol-baclofen (GABAa + GABAb receptor agonists) global inactivation, Daun02-selective inactivation of putative relapse-associated neuronal ensembles, and fluorescence-activated cell sorting of Fos-positive cells and quantitative polymerase chain reaction to demonstrate a key role of vSub neuronal ensembles in incubation of oxycodone craving after voluntary abstinence, but not homecage forced abstinence. We also used a longitudinal functional magnetic resonance imaging method and showed that functional connectivity changes in vSub-related circuits predict opioid relapse after abstinence induced by adverse consequences of opioid seeking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA