Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181739

RESUMEN

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Asunto(s)
Melanoma , Humanos , Redes Reguladoras de Genes , Inmunoterapia , Melanocitos , Melanoma/tratamiento farmacológico , Melanoma/genética , Factor de Transcripción 4/genética , Microambiente Tumoral
2.
Eng Life Sci ; 22(2): 100-114, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35140557

RESUMEN

Mammalian cells are commonly used to produce recombinant protein therapeutics, but suffer from a high cost per mg of protein produced. There is therefore great interest in improving protein yields to reduce production cost. We present an entirely novel approach to reach this goal through direct engineering of the cellular translation machinery by introducing the R98S point mutation in the catalytically essential ribosomal protein L10 (RPL10-R98S). Our data support that RPL10-R98S enhances translation levels and fidelity and reduces proteasomal activity in lymphoid Ba/F3 and Jurkat cell models. In HEK293T cells cultured in chemically defined medium, knock-in of RPL10-R98S was associated with a 1.7- to 2.5-fold increased production of four transiently expressed recombinant proteins and 1.7-fold for one out of two stably expressed proteins. In CHO-S cells, eGFP reached a 2-fold increased expression under stable but not transient conditions, but there was no production benefit for monoclonal antibodies. The RPL10-R98S associated production gain thus depends on culture conditions, cell type, and the nature of the expressed protein. Our study demonstrates the potential for using a ribosomal protein mutation for pharmaceutical protein production gains, and further research on how various factors influence RPL10-R98S phenotypes can maximize its exploitability for the mammalian protein production industry.

3.
J Exp Med ; 218(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34287642

RESUMEN

The ability to adapt to environmental stress, including therapeutic insult, contributes to tumor evolution and drug resistance. In suboptimal conditions, the integrated stress response (ISR) promotes survival by dampening cytosolic translation. We show that ISR-dependent survival also relies on a concomitant up-regulation of mitochondrial protein synthesis, a vulnerability that can be exploited using mitoribosome-targeting antibiotics. Accordingly, such agents sensitized to MAPK inhibition, thus preventing the development of resistance in BRAFV600E melanoma models. Additionally, this treatment compromised the growth of melanomas that exhibited elevated ISR activity and resistance to both immunotherapy and targeted therapy. In keeping with this, pharmacological inactivation of ISR, or silencing of ATF4, rescued the antitumoral response to the tetracyclines. Moreover, a melanoma patient exposed to doxycycline experienced complete and long-lasting response of a treatment-resistant lesion. Our study indicates that the repurposing of mitoribosome-targeting antibiotics offers a rational salvage strategy for targeted therapy in BRAF mutant melanoma and a therapeutic option for NRAS-driven and immunotherapy-resistant tumors.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Melanoma/tratamiento farmacológico , Melanoma/patología , Ribosomas Mitocondriales/efectos de los fármacos , Anciano , Animales , Línea Celular Tumoral , Doxiciclina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Masculino , Melanoma/genética , Melanoma/mortalidad , Ratones Endogámicos C57BL , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacología , Estrés Fisiológico/efectos de los fármacos , Tigeciclina/farmacología , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA