Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Diabetes Mellitus ; 14(2): 133-152, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38938445

RESUMEN

Dyslipidemia is a disorder where abnormally lipid concentrations circulate in the bloodstream. The disorder is common in type 2 diabetics (T2D) and is linked with T2D comorbidities, particularly cardiovascular disease. Dyslipidemia in T2D is typically characterized by elevated plasma triglyceride and low high-density lipoprotein cholesterol (HDL-C) levels. There is a significant gap in the literature regarding dyslipidemia in rural parts of Africa, where lipid profiles may not be captured through routine surveillance. This study aimed to characterize the prevalence and demo-graphic profile of dyslipidemia in T2D in the rural community of Ganadougou, Mali. We performed a cross-sectional study of 104 subjects with T2D in Ganadougou between November 2021 and March 2022. Demographic and lipid profiles were collected through cross-sectional surveys and serological analyses. The overall prevalence of dyslipidemia in T2D patients was 87.5% (91/104), which did not differ by sex (P = .368). High low-density lipoprotein cholesterol (LDL-C) was the most common lipid abnormality (78.9%, [82/104]). Dyslipidemia was associated with age and hypertension status (P = .013 and.036, respectively). High total and high LDL-C parameters were significantly associated with hypertension (P = .029 and .006, respectively). In low-resource settings such as rural Mali, there is a critical need to improve infrastructure for routine dyslipidemia screening to guide its prevention and intervention approaches. The high rates of dyslipidemia observed in Gandadougou, consistent with concomitant increases in cardiovascular diseases in Africa suggest that lipid profile assessments should be incorporated into routine medical care for T2D patients in African rural settings.

2.
Ann Hum Genet ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488696

RESUMEN

BACKGROUND: Dyslipidemia is becoming prevalent in Africa, where malaria is endemic. Observational studies have documented the long-term protective effect of malaria on dyslipidemia; however, these study designs are prone to confounding. Therefore, we used Mendelian randomization (MR, a method robust to confounders and reverse causation) to determine the causal effect of severe malaria (SM) and the recurrence of non-severe malaria (RNM) on lipid traits. METHOD: We performed two-sample MR using genome wide association study (GWAS) summary statistics for recurrent non-severe malaria (RNM) from a Benin cohort (N = 775) and severe malaria from the MalariaGEN dataset (N = 17,000) and lipid traits from summary-level data of a meta-analyzed African lipid GWAS (MALG, N = 24,215) from the African Partnership for Chronic Disease Research (APCDR) (N = 13,612) and the Africa Wits-IN-DEPTH partnership for genomics studies (AWI-Gen) dataset (N = 10,603). RESULT: No evidence of significant causal association was obtained between RNM and high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol and triglycerides. However, a notable association emerged between severe malarial anaemia (SMA) which is a subtype of severe malaria and reduced HDL-C levels, suggesting a potential subtype-specific effect. Nonetheless, we strongly believe that the small sample size likely affects our estimates, warranting cautious interpretation of these results. CONCLUSION: Our findings challenge the hypothesis of a broad causal relationship between malaria (both severe and recurrent non-severe forms) and dyslipidemia. The isolated association with SMA highlights an intriguing area for future research. However, we believe that conducting larger studies to investigate the connection between malaria and dyslipidemia in Africa will enhance our ability to better address the burden posed by both diseases.

3.
Nat Commun ; 14(1): 5403, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669986

RESUMEN

Most genome-wide association studies (GWAS) for lipid traits focus on the separate analysis of lipid traits. Moreover, there are limited GWASs evaluating the genetic variants associated with multiple lipid traits in African ancestry. To further identify and localize loci with pleiotropic effects on lipid traits, we conducted a genome-wide meta-analysis, multi-trait analysis of GWAS (MTAG), and multi-trait fine-mapping (flashfm) in 125,000 individuals of African ancestry. Our meta-analysis and MTAG identified four and 14 novel loci associated with lipid traits, respectively. flashfm yielded an 18% mean reduction in the 99% credible set size compared to single-trait fine-mapping with JAM. Moreover, we identified more genetic variants with a posterior probability of causality >0.9 with flashfm than with JAM. In conclusion, we identified additional novel loci associated with lipid traits, and flashfm reduced the 99% credible set size to identify causal genetic variants associated with multiple lipid traits in African ancestry.


Asunto(s)
Estudio de Asociación del Genoma Completo , Lípidos , Humanos , Población Negra , Lípidos/genética , Fenotipo
4.
Res Sq ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36993208

RESUMEN

With the rapid spread of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen agent of COVID-19 pandemic created a serious threat to global public health, requiring the most urgent research for potential therapeutic agents. The availability of genomic data of SARS-CoV-2 and efforts to determine the protein structure of the virus facilitated the identification of potent inhibitors by using structure-based approach and bioinformatics tools. Many pharmaceuticals have been proposed for the treatment of COVID-19, although their effectiveness has not been assessed yet. However, it is important to find out new-targeted drugs to overcome the resistance concern. Several viral proteins such as proteases, polymerases or structural proteins have been considered as potential therapeutic targets. But the virus target must be essential for host invasion match some drugability criterion. In this Work, we selected the highly validated pharmacological target main protease Mpro and we performed high throughput virtual screening of African Natural Products Databases such as NANPDB, EANPDB, AfroDb, and SANCDB to identify the most potent inhibitors with the best pharmacological properties. In total, 8753 natural compounds were virtually screened by AutoDock vina against the main protease of SARS-CoV-2. Two hundred and five (205) compounds showed high-affinity scores (less than - 10.0 Kcal/mol), while fifty-eight (58) filtered through Lipinski's rules showed better affinity than known Mpro inhibitors (i.e., ABBV-744, Onalespib, Daunorubicin, Alpha-ketoamide, Perampanel, Carprefen, Celecoxib, Alprazolam, Trovafloxacin, Sarafloxacin, Ethyl biscoumacetate…). Those promising compounds could be considered for further investigations toward the developpement of SARS-CoV-2 drug development.

5.
Sci Rep ; 13(1): 3718, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36878951

RESUMEN

Diabetes is currently a crisis in sub-Saharan West Africa (SSWA) with dramatic implications for public health and national budgets prioritizing infectious diseases. There is limited recent literature about the prevalence, awareness, and risk factors for type 2 diabetes (T2D) in rural parts of SSWA. This study characterized T2D prevalence and risk factors for the rural Malian community of Nièna, which is situated in Mali's second-largest province of Sikasso. Between December 2020 and July 2021, a cross-sectional study of 412 participants was conducted in the Nièna community using clinical questionnaires and rapid diagnostic tests. Among 412 participants, there were 143 (34.7%) and 269 (65.3%) males and females, respectively. The overall prevalence of T2D in Nièna was 7.5% (31/412), and prevalence rates were 8.6% (23/269) and 5.6% (8/143) for females and males, respectively. Age, family history of diabetes, hypertension, waist circumference, and fetal macrosomia were significantly associated with T2D (p = 0.007, p < 0.001, p = 0.003, p = 0.013, and p < 0.001, respectively). Notably, 61.3% (19/31) of T2D subjects were unaware of their diabetic status before the study. Field surveys have considerable utility in driving T2D awareness in rural African settings.


Asunto(s)
Diabetes Mellitus Tipo 2 , Femenino , Masculino , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Estudios Transversales , Malí/epidemiología , Prevalencia , Factores de Riesgo
6.
ACS Chem Biol ; 11(9): 2519-28, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27409249

RESUMEN

FUR (Ferric Uptake Regulator) protein is a global transcriptional regulator that senses iron status and controls the expression of genes involved in iron homeostasis, virulence, and oxidative stress. Ubiquitous in Gram-negative bacteria and absent in eukaryotes, FUR is an attractive antivirulence target since the inactivation of the fur gene in various pathogens attenuates their virulence. The characterization of 13-aa-long anti-FUR linear peptides derived from the variable part of the anti-FUR peptide aptamers, that were previously shown to decrease pathogenic E. coli strain virulence in a fly infection model, is described herein. Modeling, docking, and experimental approaches in vitro (activity and interaction assays, mutations) and in cells (yeast two-hybrid assays) were combined to characterize the interactions of the peptides with FUR, and to understand their mechanism of inhibition. As a result, reliable structure models of two peptide-FUR complexes are given. Inhibition sites are mapped in the groove between the two FUR subunits where DNA should also bind. Another peptide behaves differently and interferes with the dimerization itself. These results define these novel small peptide inhibitors as lead compounds for inhibition of the FUR transcription factor.


Asunto(s)
Aptámeros de Péptidos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Escherichia coli/metabolismo , Homeostasis , Hierro/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Virulencia , Escherichia coli/patogenicidad , Simulación del Acoplamiento Molecular , Técnicas del Sistema de Dos Híbridos
7.
ACS Chem Biol ; 9(12): 2779-86, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25238402

RESUMEN

The FUR protein (ferric uptake regulator) is an iron-dependent global transcriptional regulator. Specific to bacteria, FUR is an attractive antibacterial target since virulence is correlated to iron bioavailability. Recently, four anti-FUR peptide aptamers, composed of 13 amino acid variable loops inserted into a thioredoxinA scaffold, were identified, which were able to interact with Escherichia coli FUR (EcFUR), inhibit its binding to DNA and to decrease the virulence of pathogenic E. coli in a fly infection model. The first characterization of anti-FUR linear peptides (pF1 6 to 13 amino acids) derived from the variable part of the F1 anti-FUR peptide aptamer is described herein. Theoretical and experimental approaches, in original combination, were used to study interactions of these peptides with FUR in order to understand their mechanism of inhibition. After modeling EcFUR by homology, docking with Autodock was combined with molecular dynamics simulations in implicit solvent to take into account the flexibility of the partners. All calculations were cross-checked either with other programs or with experimental data. As a result, reliable structures of EcFUR and its complex with pF1 are given and an inhibition pocket formed by the groove between the two FUR subunits is proposed. The location of the pocket was validated through experimental mutation of key EcFUR residues at the site of proposed peptide interaction. Cyclisation of pF1, mimicking the peptide constraint in F1, improved inhibition. The details of the interactions between peptide and protein were analyzed and a mechanism of inhibition of these anti-FUR molecules is proposed.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Aptámeros de Péptidos/química , Proteínas Bacterianas/química , Escherichia coli/química , Hierro/química , Proteínas Represoras/química , Tiorredoxinas/química , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/síntesis química , Aptámeros de Péptidos/síntesis química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Hierro/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Relación Estructura-Actividad , Termodinámica , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA