Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Phys Chem B ; 128(28): 6770-6785, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38958133

RESUMEN

The herpesvirus entry mediator (HVEM) and its ligand LIGHT play crucial roles in immune system regulation, including T-cell proliferation, B-cell differentiation, and immunoglobulin secretion. However, excessive T-cell activation can lead to chronic inflammation and autoimmune diseases. Thus, inhibiting the HVEM-LIGHT interaction emerges as a promising therapeutic strategy for these conditions and in preventing adverse reactions in organ transplantation. This study focused on designing peptide inhibitors, targeting the HVEM-LIGHT interaction, using molecular dynamics (MD) simulations of 65 peptides derived from HVEM. These peptides varied in length and disulfide-bond configurations, crucial for their interaction with the LIGHT trimer. By simulating 31 HVEM domain variants, including the full-length protein, we assessed conformational changes upon LIGHT binding to understand the influence of HVEM segments and disulfide bonds on the binding mechanism. Employing multitrajectory microsecond-scale, all-atom MD simulations and molecular mechanics with generalized Born and surface area (MM-GBSA) binding energy estimation, we identified promising CRD2 domain variants with high LIGHT affinity. Notably, point mutations in these variants led to a peptide with a single disulfide bond (C58-C73) and a K54E substitution, exhibiting the highest binding affinity. The importance of the CRD2 domain and Cys58-Cys73 disulfide bond for interrupting HVEM-LIGHT interaction was further supported by analyzing truncated CRD2 variants, demonstrating similar binding strengths and mechanisms. Further investigations into the binding mechanism utilized steered MD simulations at various pulling speeds and umbrella sampling to estimate the energy profile of HVEM-based inhibitors with LIGHT. These comprehensive analyses revealed key interactions and different binding mechanisms, highlighting the increased binding affinity of selected peptide variants. Experimental circular dichroism techniques confirmed the structural properties of these variants. This study not only advances our understanding of the molecular basis of HVEM-LIGHT interactions but also provides a foundation for developing novel therapeutic strategies for immune-related disorders. Furthermore, it sets a gold standard for peptide inhibitor design in drug development due to its systematic approach.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Unión Proteica , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Humanos , Miembro 14 de Receptores del Factor de Necrosis Tumoral/química , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/química , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Diseño de Fármacos , Secuencia de Aminoácidos , Termodinámica
2.
Transl Oncol ; 42: 101892, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359715

RESUMEN

The PD-1/PD-L1 complex belongs to the group of inhibitory immune checkpoints and plays a critical role in immune regulation. The PD-1/PD-L1 axis is also responsible for immune evasion of cancer cells, and this complex is one of the main targets of immunotherapies used in oncology. Treatment using immune checkpoint inhibitors is mainly based on antibodies. This approach has great therapeutic potential; however, it also has major drawbacks and can induce immune-related adverse events. Thus, there is a strong need for alternative, non-antibody-based therapies using small molecules, peptides, or peptidomimetics. In the present study, we designed, synthesized, and evaluated a set of PD-1-targeting peptides based on the sequence and structure of PD-L1. The binding of these peptides to PD-1 was investigated using SPR and ELISA. We also assessed their ability to compete with PD-L1 for binding to PD-1 and their inhibitory properties against the PD-1/PD-L1 complex at the cellular level. The best results were obtained for the peptide PD-L1(111-127)(Y112C-I126C), named (L11), which displaced PD-L1 from binding to PD-1 in the competitive assay and inhibited the formation of the PD-1/PD-L1 complex. The (L11) peptide also exhibited strong affinity for PD-1. NMR studies revealed that (L11) does not form a well-defined secondary structure; however, MD simulation indicated that (L11) binds to PD-1 at the same place as PD-L1. After further optimization of the structure, the peptide inhibitor obtained in this study could also be used as a potential therapeutic compound targeting the PD-1/PD-L1 axis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA