Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Psychiatry ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152331

RESUMEN

Parkinson's disease (PD) is a multifaceted disease characterized by degeneration of nigrostriatal dopaminergic neurons, which results in motor and non-motor dysfunctions. Accumulation of α-synuclein (αSYN) in Lewy bodies is a key pathological feature of PD. Although the exact cause of PD remains unknown, accumulating evidence suggests that brain infiltration of T cells plays a critical role in the pathogenesis of disease, contributing to neuroinflammation and dopaminergic neurodegeneration. Here, we used a mouse model of brain-infused aggregated αSYN, which recapitulates motor and non-motor dysfunctions seen in PD patients. We found that αSYN-induced motor dysfunction in mice is accompanied by an increased number of brain-residing Th17 (IL17+ CD4+) cells, but not CD8+ T cells. To evaluate whether the modulation of T cell response could rescue αSYN-induced damage, we chronically treated animals with abatacept (8 mg/kg, sc, 3x per week), a selective T-cell co-stimulation modulator. We found that abatacept treatment decreased Th1 (IFNƔ+ CD4+) and Th17 (IL17+ CD4+) cells in the brain, rescued motor function and prevented dopaminergic neuronal loss in αSYN-infused mice. These results highlight the significance of effector CD4+ T cells, especially Th17, in the progression of PD and introduce novel possibilities for repurposing immunomodulatory drugs used for arthritis as PD-modifying therapies.

2.
iScience ; 27(7): 110178, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38993676

RESUMEN

Zika virus (ZIKV) is a neurotropic flavivirus that can persist in several tissues. The late consequences of ZIKV persistence and whether new rounds of active replication can occur, remain unaddressed. Here, we investigated whether neonatally ZIKV-infected mice are susceptible to viral reactivation in adulthood. We found that when ZIKV-infected mice are treated with immunosuppressant drugs, they present increased susceptibility to chemically induced seizures. Levels of subgenomic flavivirus RNAs (sfRNAs) were increased, relative to the amounts of genomic RNAs, in the brains of mice following immunosuppression and were associated with changes in cytokine expression. We investigated the impact of immunosuppression on the testicles and found that ZIKV genomic RNA levels are increased in mice following immunosuppression, which also caused significant testicular damage. These findings suggest that ZIKV can establish new rounds of active replication long after acute stages of disease, so exposed patients should be monitored to ensure complete viral eradication.

3.
Behav Brain Res ; 471: 115114, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38878972

RESUMEN

Zika virus (ZIKV) is a neurotropic Orthoflavivirus that causes a myriad of neurological manifestations in newborns exposed in uterus. Despite the devastating consequences of ZIKV on the developing brain, strategies to prevent or treat the consequences of viral infection are not yet available. We previously showed that short-term treatment with the TNF-α neutralizing monoclonal antibody. Infliximab could prevent seizures at acute and chronic stages of ZIKV infection, but had no impact on long-term cognitive and motor dysfunction. Due to the central role of inflammation in ZIKV-neuropathology, we hypothesized that prolonged treatment with the anti-TNF-α monoclonal antibody Infliximab could provide complete rescue of long-term behavioral deficits associated with neonatal ZIKV infection in mice. Here, neonatal (post-natal day 3) Swiss mice were submitted to subcutaneous (s.c.) injection of 106 PFU of ZIKV or mock medium and were then treated with Infliximab (20 µg/day) or sterile saline intraperitoneally (i.p.), for 40 days starting on the day of infection, and behavioral assessment started at 60 days post-infection (dpi). Infliximab prevented ZIKV-induced cognitive and motor impairments in mice. In addition, microgliosis and cell death found in mice following ZIKV infection were partially reversed by TNF-α blockage. Altogether, these results suggest that TNF-α-mediated inflammation is central for late ZIKV-induced behavioral deficits and cell death and strategies targeting this cytokine may be promising approaches to treat subjects exposed to the virus during development.


Asunto(s)
Modelos Animales de Enfermedad , Infliximab , Factor de Necrosis Tumoral alfa , Infección por el Virus Zika , Animales , Infección por el Virus Zika/complicaciones , Ratones , Infliximab/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Conducta Animal/efectos de los fármacos , Animales Recién Nacidos , Virus Zika/efectos de los fármacos , Masculino , Disfunción Cognitiva/etiología , Disfunción Cognitiva/tratamiento farmacológico , Femenino
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167097, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38408544

RESUMEN

Zika virus (ZIKV) infection was first associated with Central Nervous System (CNS) infections in Brazil in 2015, correlated with an increased number of newborns with microcephaly, which ended up characterizing the Congenital Zika Syndrome (CZS). Here, we investigated the impact of ZIKV infection on the functionality of iPSC-derived astrocytes. Besides, we extrapolated our findings to a Brazilian cohort of 136 CZS children and validated our results using a mouse model. Interestingly, ZIKV infection in neuroprogenitor cells compromises cell migration and causes apoptosis but does not interfere in astrocyte generation. Moreover, infected astrocytes lost their ability to uptake glutamate while expressing more glutamate transporters and secreted higher levels of IL-6. Besides, infected astrocytes secreted factors that impaired neuronal synaptogenesis. Since these biological endophenotypes were already related to Autism Spectrum Disorder (ASD), we extrapolated these results to a cohort of children, now 6-7 years old, and found seven children with ASD diagnosis (5.14 %). Additionally, mice infected by ZIKV revealed autistic-like behaviors, with a significant increase of IL-6 mRNA levels in the brain. Considering these evidence, we inferred that ZIKV infection during pregnancy might lead to synaptogenesis impairment and neuroinflammation, which could increase the risk for ASD.


Asunto(s)
Astrocitos , Trastorno del Espectro Autista , Enfermedades Neuroinflamatorias , Sinapsis , Infección por el Virus Zika , Virus Zika , Infección por el Virus Zika/patología , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología , Infección por el Virus Zika/complicaciones , Trastorno del Espectro Autista/virología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/patología , Humanos , Animales , Ratones , Virus Zika/fisiología , Femenino , Niño , Sinapsis/metabolismo , Sinapsis/patología , Enfermedades Neuroinflamatorias/virología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/etiología , Astrocitos/virología , Astrocitos/metabolismo , Astrocitos/patología , Masculino , Interleucina-6/metabolismo , Interleucina-6/genética , Embarazo , Factores de Riesgo , Células Madre Pluripotentes Inducidas/virología , Células Madre Pluripotentes Inducidas/metabolismo , Brasil/epidemiología , Modelos Animales de Enfermedad , Neurogénesis
5.
J Neurochem ; 166(6): 915-927, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37603368

RESUMEN

The Flaviviridae family comprises positive-sense single-strand RNA viruses mainly transmitted by arthropods. Many of these pathogens are especially deleterious to the nervous system, and a myriad of neurological symptoms have been associated with infections by Zika virus (ZIKV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) in humans. Studies suggest that viral replication in neural cells and the massive release of pro-inflammatory mediators lead to morphological alterations of synaptic spine structure and changes in the balance of excitatory/inhibitory neurotransmitters and receptors. Glutamate is the predominant excitatory neurotransmitter in the brain, and studies propose that either enhanced release or impaired uptake of this amino acid contributes to brain damage in several conditions. Here, we review existing evidence suggesting that glutamatergic dysfunction-induced by flaviviruses is a central mechanism for neurological damage and clinical outcomes of infection. We also discuss current data suggesting that pharmacological approaches that counteract glutamatergic dysfunction show benefits in animal models of such viral diseases.


Asunto(s)
Flavivirus , Neuroquímica , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Ácido Glutámico
6.
Behav Brain Res ; 451: 114519, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37263423

RESUMEN

Zika virus (ZIKV) infection causes severe neurological consequences in both gestationally-exposed infants and adults. Sensorial gating deficits strongly correlate to the motor, sensorial and cognitive impairments observed in ZIKV-infected patients. However, no startle response or prepulse inhibition (PPI) assessment has been made in patients or animal models. In this study, we identified different outcomes according to the age of infection and sex in mice: neonatally infected animals presented an increase in PPI and delayed startle latency. However, adult-infected male mice presented lower startle amplitude, while a PPI impairment was observed 14 days after infection in both sexes. Our data further the understanding of the functional impacts of ZIKV on the developing and mature nervous system, which could help explain other behavioral and cognitive alterations caused by the virus. With this study, we support the startle reflex testing in ZIKV-exposed patients, especially infants, allowing for early detection of functional neuromotor damage and early intervention.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Femenino , Masculino , Animales , Ratones , Reflejo de Sobresalto/fisiología , Inhibición Prepulso , Infección por el Virus Zika/complicaciones , Estimulación Acústica
7.
Cell Rep ; 42(3): 112189, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36857178

RESUMEN

Cognitive dysfunction is often reported in patients with post-coronavirus disease 2019 (COVID-19) syndrome, but its underlying mechanisms are not completely understood. Evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein or its fragments are released from cells during infection, reaching different tissues, including the CNS, irrespective of the presence of the viral RNA. Here, we demonstrate that brain infusion of Spike protein in mice has a late impact on cognitive function, recapitulating post-COVID-19 syndrome. We also show that neuroinflammation and hippocampal microgliosis mediate Spike-induced memory dysfunction via complement-dependent engulfment of synapses. Genetic or pharmacological blockage of Toll-like receptor 4 (TLR4) signaling protects animals against synapse elimination and memory dysfunction induced by Spike brain infusion. Accordingly, in a cohort of 86 patients who recovered from mild COVID-19, the genotype GG TLR4-2604G>A (rs10759931) is associated with poor cognitive outcome. These results identify TLR4 as a key target to investigate the long-term cognitive dysfunction after COVID-19 infection in humans and rodents.


Asunto(s)
COVID-19 , Disfunción Cognitiva , Humanos , Animales , Ratones , COVID-19/complicaciones , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2/metabolismo , Receptor Toll-Like 4 , Síndrome Post Agudo de COVID-19
8.
Mater Today Bio ; 18: 100525, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36619201

RESUMEN

Several human pathogens can cause long-lasting neurological damage. Despite the increasing clinical knowledge about these conditions, most still lack efficient therapeutic interventions. Gene therapy (GT) approaches comprise strategies to modify or adjust the expression or function of a gene, thus providing therapy for human diseases. Since recombinant nucleic acids used in GT have physicochemical limitations and can fail to reach the desired tissue, viral and non-viral vectors are applied to mediate gene delivery. Although viral vectors are associated to high levels of transfection, non-viral vectors are safer and have been further explored. Different types of nanosystems consisting of lipids, polymeric and inorganic materials are applied as non-viral vectors. In this review, we discuss potential targets for GT intervention in order to prevent neurological damage associated to infectious diseases as well as the role of nanosized non-viral vectors as agents to help the selective delivery of these gene-modifying molecules. Application of non-viral vectors for delivery of GT effectors comprise a promising alternative to treat brain inflammation induced by viral infections.

9.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628394

RESUMEN

RoundUp® (RUp) is a comercial formulation containing glyphosate (N-(phosphono-methyl) glycine), and is the world's leading wide-spectrum herbicide used in agriculture. Supporters of the broad use of glyphosate-based herbicides (GBH) claim they are innocuous to humans, since the active compound acts on the inhibition of enzymes which are absent in human cells. However, the neurotoxic effects of GBH have already been shown in many animal models. Further, these formulations were shown to disrupt the microbiome of different species. Here, we investigated the effects of a lifelong exposure to low doses of the GBH-RUp on the gut environment, including morphological and microbiome changes. We also aimed to determine whether exposure to GBH-RUp could harm the developing brain and lead to behavioral changes in adult mice. To this end, animals were exposed to GBH-RUp in drinking water from pregnancy to adulthood. GBH-RUp-exposed mice had no changes in cognitive function, but developed impaired social behavior and increased repetitive behavior. GBH-Rup-exposed mice also showed an activation of phagocytic cells (Iba-1-positive) in the cortical brain tissue. GBH-RUp exposure caused increased mucus production and the infiltration of plama cells (CD138-positive), with a reduction in phagocytic cells. Long-term exposure to GBH-RUp also induced changes in intestinal integrity, as demonstrated by the altered expression of tight junction effector proteins (ZO-1 and ZO-2) and a change in the distribution of syndecan-1 proteoglycan. The herbicide also led to changes in the gut microbiome composition, which is also crucial for the establishment of the intestinal barrier. Altogether, our findings suggest that long-term GBH-RUp exposure leads to morphological and functional changes in the gut, which correlate with behavioral changes that are similar to those observed in patients with neurodevelopmental disorders.


Asunto(s)
Microbioma Gastrointestinal , Herbicidas , Adulto , Animales , Disbiosis/inducido químicamente , Femenino , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Humanos , Ratones , Embarazo , Glifosato
10.
Brain Behav Immun ; 100: 183-193, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34896181

RESUMEN

Neural-immune interactions are related to the synapse plasticity and other dynamic processes in the nervous system. The absence or dysfunction of cellular/molecular elements from the immune system lead to impairments in the central and peripheral nervous system with behavior consequences such as cognitive, sensory, and locomotor deficits as well as social disabilities and anxiety disturbances. Cellular interactions between immune cells such as macrophages, microglia, and neutrophils with glial or neuronal cells have been of increasing interest over the last years. However, little is known about the role of immune-derived soluble factors in the context of homeostasis of the nervous system. Leukotrienes (LTs) are lipid mediators derived from the oxidation of arachidonic acid by 5-lipoxygenase (5-LO), and are classically involved in inflammation, allergies, and asthma. Here, we demonstrated that adult mice lacking 5-LO (5-LO-/-) showed motor deficits in rotarod test and increased repetitive behavior (marble burying test). These behavioral changes are accompanied by increased levels of synapse proteins (PSD95 and synaptophysin) at the motor cortex and hippocampus, but not with BDNF alterations. No changes in microglial cell density or morphology were seen in the brains of 5-LO-/- mice. Furthermore, expression of fractalkine receptor CX3CR1 was increased and of its ligand CX3CL1 was decreased in the cortex of 5-LO-/- mice. Here we provide evidence for the involvement of 5-LO products structuring synapses network with motor behavior consequences. We suggest that the absence of 5-LO products lead to modified microglial/neuron interaction, reducing microglial pruning.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Encéfalo , Sinapsis , Animales , Araquidonato 5-Lipooxigenasa/deficiencia , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C/biosíntesis , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Ratones , Microglía/metabolismo , Trastornos Motores/etiología , Trastornos Motores/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo
11.
Behav Brain Res ; 419: 113680, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34822947

RESUMEN

Conversion of the cellular prion protein (PrPC) into the scrapie form (PrPSc) is the leading step to the development of transmissible spongiform encephalopathies (TSEs), still incurable neurodegenerative disorders. Interaction of PrPC with cellular and synthetic ligands that induce formation of scrapie-like conformations has been deeply investigated in vitro. Different nucleic acid (NA) sequences bind PrP and convert it to ß-sheet-rich or unfolded species; among such NAs, a 21-mer double-stranded DNA, D67, was shown to induce formation of PrP aggregates that were cytotoxic. However, in vivo effects of these PrP-DNA complexes were not explored. Herein, aggregates of recombinant full-length PrP (rPrP23-231) induced by interaction with the D67 aptamer were inoculated into the lateral ventricle of Swiss mice and acute effects were investigated. The aggregates had no influence on emotional, locomotor and motor behavior of mice. In contrast, mice developed cognitive impairment and hippocampal synapse loss, which was accompanied by intense activation of glial cells in this brain region. Our results suggest that the i.c.v. injection of rPrP:D67 aggregates is an interesting model to study the neurotoxicity of aggregated PrP in vivo, and that glial cell activation may be an important step for behavioral and cognitive dysfunction in prion diseases.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Conducta Animal/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Hipocampo/efectos de los fármacos , Proteínas Priónicas/farmacología , Sinapsis/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Ventrículos Laterales/efectos de los fármacos , Masculino , Ratones
12.
Neuropharmacology ; 201: 108841, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34666076

RESUMEN

A strong association between perinatal viral infections and neurodevelopmental disorders has been established. Both the direct contact of the virus with the developing brain and the strong maternal immune response originated by viral infections can impair proper neurodevelopment. Coronavirus disease 2019 (COVID-19), caused by the highly-infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently responsible for a large global outbreak and is a major public health issue. While initial studies focused on the viral impact on the respiratory system, increasing evidence suggest that SARS-CoV-2 infects other organs and tissues including the mature brain. While studies continue to determine the neuropathology associated to COVID-19, the consequences of SARS-CoV-2 infection to the developing brain remain largely unexplored. The present review discusses evidence suggesting that SARS-CoV-2 infection may have persistent effects on the course of pregnancy and on brain development. Studies have shown that several proinflammatory mediators which are increased in the SARS-CoV-2-associated cytokine storm, are also modified in other viral infections known to increase the risk of neurodevelopmental disorders. In this sense, further studies should assess the genuine effects of SARS-CoV-2 infection during pregnancy and delivery along with an extended follow-up of the offspring, including neurocognitive, neuroimaging, and electrophysiological examination. It also remains to be determined whether and by which mechanisms SARS-CoV-2 intrauterine and early life infection could lead to an increased risk of developing neuropsychiatric disorders, such as autism (ASD) and schizophrenia (SZ), in the offspring.


Asunto(s)
Trastorno del Espectro Autista/epidemiología , COVID-19/epidemiología , Síndrome de Liberación de Citoquinas/epidemiología , Trastornos del Neurodesarrollo/epidemiología , Complicaciones Infecciosas del Embarazo/epidemiología , Efectos Tardíos de la Exposición Prenatal/epidemiología , Esquizofrenia/epidemiología , Trastorno del Espectro Autista/inmunología , Encéfalo/embriología , Encéfalo/inmunología , COVID-19/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Trastornos del Neurodesarrollo/inmunología , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Factores de Riesgo , SARS-CoV-2 , Esquizofrenia/inmunología
13.
Behav Brain Res ; 411: 113386, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34052264

RESUMEN

The prion glycoprotein (PrPC) is highly expressed in the nervous system as well as in other organs. Its functional roles in behavior have been examined mainly in non co-isogenic, wild-type and PrPC-deficient mice, which showed both age- and genotype-dependent differences. In general, however, effects of genetic background upon behavioral tests are mostly unclear when applied to aging rodents. The present study aimed to determine the effect of deletion of the prion protein on behavior of isogenic mice across different ages. We disclosed a genotype-dependent behavioral dissociation between either motor or cognitive tests, as a function of both age and test type. Remarkably, we also detected a clear age- and genotype-dependent difference in the variability of performance in a cognitive test. The current findings are relevant for both the interpretation of PrPC-related behavior, as well as for issues of reproducibility in studies of rodent behavior.


Asunto(s)
Cognición/fisiología , Actividad Motora/genética , Proteínas Priónicas/metabolismo , Factores de Edad , Envejecimiento/metabolismo , Animales , Animales no Consanguíneos , Encéfalo/metabolismo , Femenino , Genotipo , Masculino , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Proteínas Priónicas/genética , Priones/genética , Priones/metabolismo
14.
Transl Psychiatry ; 11(1): 251, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911072

RESUMEN

Alzheimer's disease (AD) is associated with memory impairment and altered peripheral metabolism. Mounting evidence indicates that abnormal signaling in a brain-periphery metabolic axis plays a role in AD pathophysiology. The activation of pro-inflammatory pathways in the brain, including the interleukin-6 (IL-6) pathway, comprises a potential point of convergence between memory dysfunction and metabolic alterations in AD that remains to be better explored. Using T2-weighted magnetic resonance imaging (MRI), we observed signs of probable inflammation in the hypothalamus and in the hippocampus of AD patients when compared to cognitively healthy control subjects. Pathological examination of post-mortem AD hypothalamus revealed the presence of hyperphosphorylated tau and tangle-like structures, as well as parenchymal and vascular amyloid deposits surrounded by astrocytes. T2 hyperintensities on MRI positively correlated with plasma IL-6, and both correlated inversely with cognitive performance and hypothalamic/hippocampal volumes in AD patients. Increased IL-6 and suppressor of cytokine signaling 3 (SOCS3) were observed in post-mortem AD brains. Moreover, activation of the IL-6 pathway was observed in the hypothalamus and hippocampus of AD mice. Neutralization of IL-6 and inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling in the brains of AD mouse models alleviated memory impairment and peripheral glucose intolerance, and normalized plasma IL-6 levels. Collectively, these results point to IL-6 as a link between cognitive impairment and peripheral metabolic alterations in AD. Targeting pro-inflammatory IL-6 signaling may be a strategy to alleviate memory impairment and metabolic alterations in the disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Péptidos beta-Amiloides/metabolismo , Animales , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Humanos , Interleucina-6 , Ratones , Placa Amiloide
15.
Brain Behav Immun ; 95: 287-298, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33838250

RESUMEN

Sepsis survivors show long-term impairments, including alterations in memory and executive function. Evidence suggests that systemic inflammation contributes to the progression of Alzheimers disease (AD), but the mechanisms involved in this process are still unclear. Boosted (trained) and diminished (tolerant) innate immune memory has been described in peripheral immune cells after sepsis. However, the occurrence of long-term innate immune memory in the post-septic brain is fully unexplored. Here, we demonstrate that sepsis causes long-lasting trained innate immune memory in the mouse brain, leading to an increased susceptibility to Aß oligomers (AßO), central neurotoxins found in AD. Hippocampal microglia from sepsis-surviving mice shift to an amoeboid/phagocytic morphological profile when exposed to low amounts of AßO, and this event was accompanied by the upregulation of several pro-inflammatory proteins (IL-1ß, IL-6, INF-γ and P2X7 receptor) in the mouse hippocampus, suggesting that a trained innate immune memory occurs in the brain after sepsis. Brain exposure to low amounts of AßO increased microglial phagocytic ability against hippocampal synapses. Pharmacological blockage of brain phagocytic cells or microglial depletion, using minocycline and colony stimulating factor 1 receptor inhibitor (PLX3397), respectively, prevents cognitive dysfunction induced by AßO in sepsis-surviving mice. Altogether, our findings suggest that sepsis induces a long-lasting trained innate immune memory in the mouse brain, leading to an increased susceptibility to AßO-induced neurotoxicity and cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Sepsis , Péptidos beta-Amiloides/metabolismo , Animales , Hipocampo/metabolismo , Memoria Inmunológica , Ratones , Microglía/metabolismo
16.
Sci Rep ; 10(1): 6763, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317689

RESUMEN

Modulation of brain activity is one of the main mechanisms capable of demonstrating the synchronization dynamics of neural oscillations. In epilepsy, modulation is a key concept since seizures essentially result from neural hypersynchronization and hyperexcitability. In this study, we have introduced a time-dependent index based on the Kullback-Leibler divergence to quantify the effects of phase and frequency modulations of neural oscillations in neonatal mice exhibiting epileptiform activity induced by Zika virus (ZIKV) infection. Through this index, we demonstrate that fast oscillations (gamma and beta 2) are the more susceptible modulated rhythms in terms of phase, during seizures, whereas slow waves (delta and theta) mainly undergo changes in frequency. The index also allowed detection of specific patterns associated with the interdependent modulation of phase and frequency in neural activity. Furthermore, by comparing ZIKV modulations with the general computational model Epileptors, we verify different signatures related to the brain rhythms modulation in phase and frequency. These findings instigate new studies on the effects of ZIKV infection on neuronal networks from electrophysiological activities, and how different mechanisms can trigger epilepsy.


Asunto(s)
Ondas Encefálicas/fisiología , Epilepsia/fisiopatología , Neuronas/fisiología , Infección por el Virus Zika/virología , Animales , Ritmo beta/fisiología , Encéfalo/patología , Encéfalo/virología , Modelos Animales de Enfermedad , Epilepsia/complicaciones , Epilepsia/virología , Ritmo Gamma/fisiología , Humanos , Ratones , Neuronas/virología , Virus Zika/patogenicidad , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/fisiopatología
17.
Cell Rep ; 30(7): 2180-2194.e8, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075735

RESUMEN

Obesity has been associated with cognitive decline, atrophy of brain regions related to learning and memory, and higher risk of developing dementia. However, the molecular mechanisms underlying these neurological alterations are still largely unknown. Here, we investigate the effects of palmitate, a saturated fatty acid present at high amounts in fat-rich diets, in the brain. Palmitate is increased in the cerebrospinal fluid (CSF) of overweight and obese patients with amnestic mild cognitive impairment. In mice, intracerebroventricular infusion of palmitate impairs synaptic plasticity and memory. Palmitate induces astroglial and microglial activation in the mouse hippocampus, and its deleterious impact is mediated by microglia-derived tumor necrosis factor alpha (TNF-α) signaling. Our results establish that obesity is associated with increases in CSF palmitate. By defining a pro-inflammatory mechanism by which abnormal levels of palmitate in the brain impair memory, the results further suggest that anti-inflammatory strategies may attenuate memory impairment in obesity.


Asunto(s)
Trastornos de la Memoria/etiología , Obesidad/líquido cefalorraquídeo , Palmitatos/líquido cefalorraquídeo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Humanos , Trastornos de la Memoria/patología , Ratones , Obesidad/patología
18.
Nat Commun ; 10(1): 3890, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488835

RESUMEN

Neurological complications affecting the central nervous system have been reported in adult patients infected by Zika virus (ZIKV) but the underlying mechanisms remain unknown. Here, we report that ZIKV replicates in human and mouse adult brain tissue, targeting mature neurons. ZIKV preferentially targets memory-related brain regions, inhibits hippocampal long-term potentiation and induces memory impairment in adult mice. TNF-α upregulation, microgliosis and upregulation of complement system proteins, C1q and C3, are induced by ZIKV infection. Microglia are found to engulf hippocampal presynaptic terminals during acute infection. Neutralization of TNF-α signaling, blockage of microglial activation or of C1q/C3 prevent synapse and memory impairment in ZIKV-infected mice. Results suggest that ZIKV induces synapse and memory dysfunction via aberrant activation of TNF-α, microglia and complement. Our findings establish a mechanism by which ZIKV affects the adult brain, and point to the need of evaluating cognitive deficits as a potential comorbidity in ZIKV-infected adults.


Asunto(s)
Encéfalo/virología , Sinapsis/virología , Replicación Viral , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Conducta Animal , Encéfalo/metabolismo , Encéfalo/patología , Proteínas del Sistema Complemento/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Inflamación , Aprendizaje , Masculino , Memoria , Trastornos de la Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Neuronas/virología , Terminales Presinápticos/metabolismo , Receptores Tipo I de Interleucina-1/genética , Sinapsis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Mol Neurobiol ; 56(11): 7754-7764, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31115777

RESUMEN

Gestational diabetes mellitus (GD) is a form of insulin resistance triggered during gestation, which affects approximately 10% of pregnant women. Although previously considered a transient condition with few long-term consequences, growing evidence suggest that GD may be linked to permanent metabolic and neurologic changes in the offspring. Currently available GD models fail to recapitulate the full spectrum of this disease, thus providing limited information about the true burden of this condition. Here, we describe a new mouse model of GD, based on the administration of an insulin receptor antagonist (S961, 30 nmol/kg s.c. daily) during pregnancy. Pregnant mice developed increased fasting glycemia and glucose intolerance in the absence of maternal obesity, with a return to normoglycemia shortly after parturition. Moreover, we showed that the adult offspring of GD dams presented pronounced metabolic and cognitive dysfunction when exposed to short-term high-fat diet (HFD). Our data demonstrate that S961 administration to pregnant mice comprises a valuable approach to study the complex pathophysiology of GD, as well as strategies focused on prevention and treatment of both the mother and the offspring. Our findings suggest that the offspring of GD mothers are more susceptible to metabolic and cognitive impairments when exposed to high-fat diet later in life, thus indicating that approaches to prevent and treat these late effects should be pursued.


Asunto(s)
Cognición , Diabetes Gestacional/patología , Animales , Animales Recién Nacidos , Cognición/efectos de los fármacos , Disfunción Cognitiva/complicaciones , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Intolerancia a la Glucosa/complicaciones , Conducta Materna/efectos de los fármacos , Ratones , Péptidos/farmacología , Embarazo , Resultado del Embarazo
20.
Cell Death Dis ; 10(4): 323, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975983

RESUMEN

Harmful environmental stimuli during critical stages of development can profoundly affect behavior and susceptibility to diseases. Alzheimer disease (AD) is the most frequent neurodegenerative disease, and evidence suggest that inflammatory conditions act cumulatively, contributing to disease onset. Here we investigated whether infection early in life can contribute to synapse damage and cognitive impairment induced by amyloid-ß oligomers (AßOs), neurotoxins found in AD brains. To this end, wild-type mice were subjected to neonatal (post-natal day 4) infection by Escherichia coli (1 × 104 CFU/g), the main cause of infection in low-birth-weight premature infants in the US. E. coli infection caused a transient inflammatory response in the mouse brain starting shortly after infection. Although infected mice performed normally in behavioral tasks in adulthood, they showed increased susceptibility to synapse damage and memory impairment induced by low doses of AßOs (1 pmol; intracerebroventricular) in the novel object recognition paradigm. Using in vitro and in vivo approaches, we show that microglial cells from E. coli-infected mice undergo exacerbated activation when exposed to low doses of AßOs. In addition, treatment of infected pups with minocycline, an antibiotic that inhibits microglial pro-inflammatory polarization, normalized microglial response to AßOs and restored normal susceptibility of mice to oligomer-induced cognitive impairment. Interestingly, mice infected with by E. coli (1 × 104 CFU/g) during adolescence (post-natal day 21) or adulthood (post-natal day 60) showed normal cognitive performance even in the presence of AßOs (1 pmol), suggesting that only infections at critical stages of development may lead to increased susceptibility to amyloid-ß-induced toxicity. Altogether, our findings suggest that neonatal infections can modulate microglial response to AßOs into adulthood, thus contributing to amyloid-ß-induced synapse damage and cognitive impairment.


Asunto(s)
Disfunción Cognitiva/microbiología , Encefalitis/microbiología , Infecciones por Escherichia coli/complicaciones , Microglía/metabolismo , Sinapsis/efectos de los fármacos , Péptidos beta-Amiloides , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Encéfalo/inmunología , Encéfalo/microbiología , Células Cultivadas , Disfunción Cognitiva/inducido químicamente , Susceptibilidad a Enfermedades/etiología , Femenino , Masculino , Ratones , Microglía/citología , Microglía/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA