Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
J Proteome Res ; 23(6): 2288-2297, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38805445

RESUMEN

In the work presented herein, a simple serial-pelleting purification strategy combined with a mass spectrometry-based proteomics analysis was developed as a means of discerning differences in extracellular vesicle (EV) populations found in bovine milk samples. A sequence of ultracentrifugation speeds was used to generate changes in the abundances of EV populations, allowing for the identification of associated proteins. A metric was developed to determine the relative abundances of proteins in large EVs (>200 nm) and small EVs (<200 nm). Of the 476 proteins consistently found in this study, 340 are associated with vesicular components. Of these, 156 were heavily enriched in large EVs, 155 shared between large and small EVs, and 29 heavily enriched in small EVs. Additionally, out of 68 proteins annotated as exosome proteins, 32 were enriched in large EVs, 27 shared between large and small EVs, 5 enriched in small EVs, and 7 were found to be nonvesicular contaminant proteins. The top correlated proteins in the small EV group were predominantly membrane-bound proteins, whereas the top correlated proteins in the large EV group were mostly cytosolic enzymes for molecular processing. This method provides a means of assessing the origins of vesicle components and provides new potential marker proteins within discrete vesicle populations.


Asunto(s)
Exosomas , Leche , Proteómica , Ultracentrifugación , Animales , Bovinos , Exosomas/química , Exosomas/metabolismo , Proteómica/métodos , Leche/química , Ultracentrifugación/métodos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Proteínas de la Leche/análisis , Proteínas de la Leche/metabolismo , Proteínas de la Leche/química , Espectrometría de Masas/métodos
2.
J Am Soc Mass Spectrom ; 35(6): 1063-1068, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38748611

RESUMEN

Bortezomib, a small dipeptide-like molecule, is a proteasome inhibitor used widely in the treatment of myeloma and lymphoma. This molecule reacts with threonine side chains near the center of the 20S proteasome and disrupts proteostasis by blocking enzymatic sites that are responsible for protein degradation. In this work, we use novel mass-spectrometry-based techniques to examine the influence of bortezomib on the structures and stabilities of the 20S core particle. These studies indicate that bortezomib binding dramatically favors compact 20S structures (in which the axial gate is closed) over larger structures (in which the axial gate is open)─suppressing gate opening by factors of at least ∼400 to 1300 over the temperature range that is studied. Thus, bortezomib may also restrict degradation in the 20S proteasome by preventing substrates from entering the catalytic pore. That bortezomib influences structures at the entrance region of the pore at such a long distance (∼65 to 75 Å) from its binding sites raises a number of interesting biophysical issues.


Asunto(s)
Bortezomib , Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Bortezomib/farmacología , Bortezomib/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología , Modelos Moleculares , Conformación Proteica/efectos de los fármacos , Humanos
3.
J Am Soc Mass Spectrom ; 35(5): 982-991, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38597281

RESUMEN

The structural characterization and differentiation of four types of oligoubiquitin conjugates [linear (Met1)-, Lys11-, Lys48-, Lys63-linked di-, tri-, and tetraubiquitin chains] using ion mobility mass spectrometry are reported. A comparison of collision cross sections for the same linkage of di-, tri-, and tetraubiquitin chains shows differences in conformational elongation for higher charge states due to the interplay of linkage-derived structure and Coulombic repulsion. For di- and triubiquitin chains, this elongation results in a single narrow feature representing an elongated conformation type for multiple higher charge state species. In contrast, higher charge state tetraubiquitin species do not form a single conformer type as readily. A comparison of different linkages in tetraubiquitin chains reveals greater similarity in conformation type at lower charge states; with increasing charge state, the four linkage types diverge in the relative proportions of elongated conformer types with Met1- ≥ Lys11- > Lys63- > Lys48-linkage. These differences in conformational trends could be discussed with respect to biological functions of linkage-specific polyubiquitinated proteins.


Asunto(s)
Espectrometría de Movilidad Iónica , Ubiquitina , Espectrometría de Movilidad Iónica/métodos , Ubiquitina/química , Conformación Proteica , Espectrometría de Masas/métodos , Modelos Moleculares , Lisina/química
4.
J Am Soc Mass Spectrom ; 35(4): 683-695, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38518248

RESUMEN

The human cerebellum is an ultraspecialized region of the brain responsible for cognitive functions and movement coordination. The fine mechanisms through which the process of aging impacts such functions are not well understood; therefore, a rigorous exploration of this brain region at the molecular level is deemed necessary. Gangliosides, sialylated glycosphingolipids, highly and specifically expressed in the human central nervous system, represent possible molecular markers of cerebellum development and aging. In this context, for a comprehensive determination of development- and age-specific components, we have conducted here a comparative profiling and structural determination of the gangliosides expressed in fetal cerebellum in two intrauterine developmental stages and aged cerebellum by ion mobility separation (IMS) mass spectrometry (MS) and tandem MS (MS/MS). Due to the high sensitivity and efficiency of separation provided by IMS MS, no less than 551 chemically distinct species were identified, which represents 4.5 times more gangliosides than ever discovered in this brain region. The detailed assessment of fetal vs aged cerebellum gangliosidome showed marked discrepancies not only in the general number of the species expressed, but also in their sialylation patterns, the modifications of the glycan core, and the composition of the ceramides. All of these characteristics are potential markers of cerebellum development and aging. The structural analysis by collision-induced dissociation (CID) documented the occurrence of GD1b (d18:1/18:0) isomer in the fetal cerebellum in the second gestational trimester, with all probability of GQ1b (t18:1/18:0) in the near-term fetus and of GQ1b (d18:1/18:0) in aged cerebellum.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Humanos , Anciano , Espectrometría de Masa por Ionización de Electrospray/métodos , Gangliósidos/análisis , Encéfalo , Cerebelo
5.
Elife ; 122024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252560

RESUMEN

Structural and functional studies of the ATP-binding cassette transporter MsbA have revealed two distinct lipopolysaccharide (LPS) binding sites: one located in the central cavity and the other at a membrane-facing, exterior site. Although these binding sites are known to be important for MsbA function, the thermodynamic basis for these specific MsbA-LPS interactions is not well understood. Here, we use native mass spectrometry to determine the thermodynamics of MsbA interacting with the LPS-precursor 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL). The binding of KDL is solely driven by entropy, despite the transporter adopting an inward-facing conformation or trapped in an outward-facing conformation with adenosine 5'-diphosphate and vanadate. An extension of the mutant cycle approach is employed to probe basic residues that interact with KDL. We find the molecular recognition of KDL is driven by a positive coupling entropy (as large as -100 kJ/mol at 298 K) that outweighs unfavorable coupling enthalpy. These findings indicate that alterations in solvent reorganization and conformational entropy can contribute significantly to the free energy of protein-lipid association. The results presented herein showcase the advantage of native MS to obtain thermodynamic insight into protein-lipid interactions that would otherwise be intractable using traditional approaches, and this enabling technology will be instrumental in the life sciences and drug discovery.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Lipopolisacáridos , Termodinámica , Entropía , Sitios de Unión
7.
J Phys Chem A ; 127(45): 9399-9408, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37934510

RESUMEN

Chymotrypsin inhibitor 2 (CI-2) is a well-studied, textbook example of a cooperative, two-state, native ↔ denatured folding transition. A recent hybrid ion mobility spectrometry (IMS)/mass spectrometry (MS) thermal denaturation study of CI-2 (the well-studied truncated 64-residue model) in water reported evidence that this two-state transition involves numerous (∼41) unique native and non-native (denatured) solution conformations. The characterization of so many, often low-abundance, states is possible because of the very high dynamic range of IMS-MS measurements of ionic species that are produced upon electrospraying CI-2 solutions from a variable temperature electrospray ionization source. A thermodynamic analysis of these states revealed large changes in enthalpy (ΔH) and entropy (ΔS) at different temperatures, and it was suggested that such variation might arise because of temperature-dependent conformational changes of the protein in response to changes in the conformational entropy and the dielectric permeability of water, which drops from a value of ε ∼ 79 at 24 °C to ∼ 60 at 82 °C. Herein, we examine how adding methanol to water influences the distributions of CI-2 conformers and their ensuing stabilities. The dielectric constant of a 60:40 water:methanol (MeOH) drops from ε ∼ 60 at 24 °C to ∼ 51 at 64 °C. Although the same set of conformers observed in water appears to be present in 60:40 water:MeOH, the abundance of each is substantially altered by the presence of methanol. Relative free energy values (ΔG) and thermodynamic values [ΔH and ΔS and heat capacities (ΔCp)] are derived from a Gibbs-Helmholtz analysis. A comparison of these data from water and water:MeOH systems allows rare insight into how variations in solvation and temperature affect many-state protein equilibria. While these studies confirm that variations in solvent dielectric constant with temperature affect the distributions of conformers that are observed, our findings suggest that other solvent differences may also affect abundances.

8.
Anal Chem ; 95(33): 12209-12215, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37552619

RESUMEN

Charge detection mass spectrometry (CDMS) was examined as a means of studying proteasomes. To this end, the following masses of the 20S, 19S, 26S, and 30S proteasomes from Saccharomyces cerevisiae (budding yeast) were measured: m(20S) = 738.8 ± 2.9 kDa, m(19S) = 926.2 ± 4.8 kDa, m(26S) = 1,637.0 ± 7.6 kDa, and m(30S) = 2,534.2 ± 10.8 kDa. Under some conditions, larger (20S)x (where x = 1 to ∼13) assemblies are observed; the 19S regulatory particle also oligomerizes, but to a lesser extent, forming (19S)x complexes (where x = 1 to 4, favoring the x = 3 trimer). The (20S)x oligomers are favored in vitro, as the pH of the solution is lowered (from 7.0 to 5.4, in a 20 mM ammonium acetate solution) and may be related to in vivo proteasome storage granules that are observed under carbon starvation. From measurements of m(20S)x (x = 1 to ∼13) species, it appears that each multimer retains all 28 proteins of the 20S complex subunit. Several types of structures that might explain the formation of (20S)x assemblies are considered. We stress that each structural type [hypothetical planar, raft-like geometries (where individual proteasomes associate through side-by-side interactions); elongated, rodlike geometries (where subunits are bound end-to-end); and geometries that are roughly spherical (arising from aggregation through nonspecific subunit interactions)] is highly speculative but still interesting to consider, and a short discussion is provided. The utility of CDMS for characterizing proteasomes and related oligomers is discussed.


Asunto(s)
Espectrometría de Masas , Complejo de la Endopetidasa Proteasomal/química , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Modelos Moleculares , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/química
9.
bioRxiv ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37461710

RESUMEN

Structural and functional studies of the ATP-binding cassette transporter MsbA have revealed two distinct lipopolysaccharide (LPS) binding sites: one located in the central cavity and the other at a membrane-facing, exterior site. Although these binding sites are known to be important for MsbA function, the thermodynamic basis for these specific MsbA-LPS interactions is not well understood. Here, we use native mass spectrometry to determine the thermodynamics of MsbA interacting with the LPS-precursor 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL). The binding of KDL is solely driven by entropy, despite the transporter adopting an inward-facing conformation or trapped in an outward-facing conformation with adenosine 5'-diphosphate and vanadate. An extension of the mutant cycle approach is employed to probe basic residues that interact with KDL. We find the molecular recognition of KDL is driven by a positive coupling entropy (as large as -100 kJ/mol at 298K) that outweighs unfavorable coupling enthalpy. These findings indicate that alterations in solvent reorganization and conformational entropy can contribute significantly to the free energy of protein-lipid association. The results presented herein showcase the advantage of native MS to obtain thermodynamic insight into protein-lipid interactions that would otherwise be intractable using traditional approaches, and this enabling technology will be instrumental in the life sciences and drug discovery.

10.
J Am Soc Mass Spectrom ; 34(8): 1559-1568, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37418419

RESUMEN

Ion mobility spectrometry-mass spectrometry (IMS-MS) experiments on a cyclic IMS instrument were used to examine heterogeneous distributions of structures found in the 15+ to 18+ charge states of the hemoglobin tetramer (Hb). The resolving power of IMS measurements is known to increase with increasing drift-region length. This effect is not significant for Hb charge states as peaks were shown to broaden with increasing drift-region length. This observation suggests that multiple structures with similar cross sections may be present. To examine this hypothesis, selections of drift time distributions were isolated and subsequently reinjected into the mobility region for additional separation. These IMS-IMS experiments demonstrate that selected regions separate further upon additional passes around the drift cell, consistent with the idea that initial resolving power was limited due to the presence of many closely related conformations. Additional variable temperature electrospray ionization (vT-ESI) experiments were conducted to study how changing the solution temperature affects solution conformations. Some features in these IMS-IMS studies were observed to change similarly with solution temperature compared to features in the single IMS distribution. Other features changed differently in the selected mobility data, indicating that solution structures that were obscured upon IMS analysis because of the complex heterogeneity of the original distribution are discernible after reducing the number of conformers that are analyzed by further IMS analysis. These results illustrate that the combination of vT-ESI with IMS-IMS is useful for resolving and exploring conformer distributions and stabilities in systems that exhibit a large degree of structural heterogeneity.


Asunto(s)
Hemoglobinas , Espectrometría de Movilidad Iónica , Espectrometría de Masas/métodos , Conformación Molecular , Temperatura
11.
J Phys Chem A ; 127(30): 6282-6291, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37490716

RESUMEN

Ion mobility spectrometry-mass spectrometry and quantum chemical calculations are used to determine the structures and stabilities of the singly protonated peptide H+KPGG. The two peaks making up the IMS distribution are shown to be tautomers differing by the location of the extra proton on either the lysine side chain or the N-terminus. The lysine-protonated tautomer is strongly preferred entropically while being disfavored in terms of the electronic energy and enthalpy. This relationship is shown, through comparison of all low-lying conformers of both tautomers, to be related to the strong hydrogen-bond network of the N-terminally protonated tautomer. A general relationship is demonstrated wherein stronger cross-peptide hydrogen-bond networks result in entropically disfavored conformers. Further effects of the H+KPGG hydrogen-bond network are probed by computationally examining singly and doubly methylated analogues. These results demonstrate the importance of the entropic consequences of hydrogen bonds to peptide stability as well as techniques for perturbing the hydrogen-bond network and folding preferences of peptides via minimal chemical modification.


Asunto(s)
Péptidos , Enlace de Hidrógeno , Péptidos/química , Hidrógeno/química , Modelos Moleculares , Estructura Terciaria de Proteína , Entropía , Metilación
12.
J Phys Chem Lett ; 14(21): 5014-5017, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224454

RESUMEN

Mass spectrometry studies of the stability of the S. cerevisiae 20S proteasome from 11 to 55 °C reveal a series of related configurations and coupled transitions that appear to be associated with opening of the proteolytic core. We find no evidence for dissociation, and all transitions are reversible. A thermodynamic analysis indicates that configurations fall into three general types of structures: enthalpically stabilized, tightly closed (observed as the +54 to +58 charge states) configurations; high-entropy (+60 to +66) states that are proposed as precursors to pore opening; and larger (+70 to +79) partially and fully open pore structures. In the absence of the 19S regulatory unit, the mechanism for opening the 20S pore appears to involve a charge-priming process that loosens the closed-pore configuration. Only a small fraction (≤2%) of these 20S precursor configurations appear to open and thus expose the catalytic cavity.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Saccharomyces cerevisiae , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteolisis
13.
J Mass Spectrom ; 58(3): e4908, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36799777

RESUMEN

Biglycan (BGN), a small leucine-rich repeat proteoglycan, is involved in a variety of pathological processes including malignant transformation, for which the upregulation of BGN was found related to cancer cell invasiveness. Because the functions of BGN are mediated by its chondroitin/dermatan sulfate (CS/DS) chains through the sulfates, the determination of CS/DS structure and sulfation pattern is of major importance. In this study, we have implemented an advanced glycomics method based on ion mobility separation (IMS) mass spectrometry (MS) and tandem MS (MS/MS) to characterize the CS disaccharide domains in BGN. The high separation efficiency and sensitivity of this technique allowed the discrimination of five distinct CS disaccharide motifs, of which four irregulated in their sulfation pattern. For the first time, trisulfated unsaturated and bisulfated saturated disaccharides were found in BGN, the latter species documenting the non-reducing end of the chains. The structural investigation by IMS MS/MS disclosed that in one or both of the CS/DS chains, the non-reducing end is 3-O-sulfated GlcA in a rather rare bisulfated motif having the structure 3-O-sulfated GlcA-4-O-sulfated GalNAc. Considering the role played by BGN in cancer cell spreading, the influence on this process of the newly identified sequences will be investigated in the future.


Asunto(s)
Sulfatos de Condroitina , Espectrometría de Masas en Tándem , Sulfatos de Condroitina/química , Biglicano , Disacáridos/química , Dermatán Sulfato/análisis , Dermatán Sulfato/química , Glicómica
14.
Nano Today ; 522023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38282661

RESUMEN

Exosomes, a class of extracellular vesicles of endocytic origin, play a critical role in paracrine signaling for successful cell-cell crosstalk in vivo. However, limitations in our current understanding of these circulating nanoparticles hinder efficient isolation, characterization, and downstream functional analysis of cell-specific exosomes. In this work, we sought to develop a method to isolate and characterize keratinocyte-originated exosomes (hExoκ) from human chronic wound fluid. Furthermore, we studied the significance of hExoκ in diabetic wounds. LC-MS-MS detection of KRT14 in hExoκ and subsequent validation by Vesiclepedia and Exocarta databases identified surface KRT14 as a reliable marker of hExoκ. dSTORM nanoimaging identified KRT14+ extracellular vesicles (EVκ) in human chronic wound fluid, 23% of which were of exosomal origin. An immunomagnetic two-step separation method using KRT14 and tetraspanin antibodies successfully isolated hExoκ from the heterogeneous pool of EV in chronic wound fluid of 15 non-diabetic and 22 diabetic patients. Isolated hExoκ (Ø75-150nm) were characterized per EV-track guidelines. dSTORM images, analyzed using online CODI followed by independent validation using Nanometrix, revealed hExoκ Ø as 80-145nm. The abundance of hExoκ was low in diabetic wound fluids and negatively correlated with patient HbA1c levels. The hExoκ isolated from diabetic wound fluid showed a low abundance of small bp RNA (<200 bp). Raman spectroscopy underscored differences in surface lipids between non-diabetic and diabetic hExoκ Uptake of hExoκ by monocyte-derived macrophages (MDM) was low for diabetics versus non-diabetics. Unlike hExoκ from non-diabetics, the addition of diabetic hExoκ to MDM polarized with LPS and INFγ resulted in sustained expression of iNOS and pro-inflammatory chemokines known to recruit macrophage (mϕ) This work provides maiden insight into the structure, composition, and function of hExoκ from chronic wound fluid thus providing a foundation for the study of exosomal malfunction under conditions of diabetic complications such as wound chronicity.

15.
Molecules ; 27(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36144762

RESUMEN

Chondroitin sulfate (CS) and dermatan sulfate (DS) are found in nature linked to proteoglycans, most often as hybrid CS/DS chains. In the extracellular matrix, where they are highly expressed, CS/DS are involved in fundamental processes and various pathologies. The structural diversity of CS/DS domains gave rise to efforts for the development of efficient analytical methods, among which is mass spectrometry (MS), one of the most resourceful techniques for the identification of novel species and their structure elucidation. In this context, we report here on the introduction of a fast, sensitive, and reliable approach based on ion mobility separation (IMS) MS and MS/MS by collision-induced dissociation (CID), for the profiling and structural analysis of CS/DS hexasaccharide domains in human embryonic kidney HEK293 cells decorin (DCN), obtained after CS/DS chain releasing by ß-elimination, depolymerization using chondroitin AC I lyase, and fractionation by size-exclusion chromatography. By IMS MS, we were able to find novel CS/DS species, i.e., under- and oversulfated hexasaccharide domains in the released CS/DS chain. In the last stage of analysis, the optimized IMS CID MS/MS provided a series of diagnostic fragment ions crucial for the characterization of the misregulations, which occurred in the sulfation code of the trisulfated-4,5-Δ-GlcAGalNAc[IdoAGalNAc]2 sequence, due to the unusual sulfation sites.


Asunto(s)
Sulfatos de Condroitina , Liasas , Sulfatos de Condroitina/química , Decorina , Dermatán Sulfato/química , Células HEK293 , Humanos , Proteoglicanos/química , Espectrometría de Masas en Tándem/métodos
16.
Anal Chem ; 94(25): 8909-8918, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35699514

RESUMEN

Unresolved inflammation compromises diabetic wound healing. Recently, we reported that inadequate RNA packaging in murine wound-edge keratinocyte-originated exosomes (Exoκ) leads to persistent inflammation [Zhou, X. ACS Nano 2020, 14(10), 12732-12748]. Herein, we use charge detection mass spectrometry (CDMS) to analyze intact Exoκ isolated from a 5 day old wound-edge tissue of diabetic mice and a heterozygous nondiabetic littermate control group. In CDMS, the charge (z) and mass-to-charge ratio (m/z) of individual exosome particles are measured simultaneously, enabling the direct analysis of masses in the 1-200 MDa range anticipated for exosomes. These measurements reveal a broad mass range for Exoκ from ∼10 to >100 MDa. The m and z values for these exosomes appear to fall into families (subpopulations); a statistical modeling analysis partially resolves ∼10-20 Exoκ subpopulations. Complementary proteomics, immunofluorescence, and electron microscopy studies support the CDMS results that Exoκ from diabetic and nondiabetic mice vary substantially. Subpopulations having high z (>650) and high m (>44 MDa) are more abundant in nondiabetic animals. We propose that these high m and z particles may arise from differences in cargo packaging. The veracity of this idea is discussed in light of other recent CDMS results involving genome packaging in vaccines, as well as exosome imaging experiments. Characterization of intact exosome particles based on the physical properties of m and z provides a new means of investigating wound healing and suggests that CDMS may be useful for other pathologies.


Asunto(s)
Diabetes Mellitus Experimental , Exosomas , Animales , Diabetes Mellitus Experimental/patología , Exosomas/patología , Inflamación , Queratinocitos , Espectrometría de Masas , Ratones
17.
J Am Soc Mass Spectrom ; 33(8): 1368-1376, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35576623

RESUMEN

Diketopiperazine (DKP) formation is an important degradation pathway for peptides and proteins. It can occur during synthesis and storage in either solution or the solid state. The kinetics of peptide cleavage through DKP formation have been analyzed for the model peptides Xaa1-Pro2-Gly4-Lys7 [Xaa = Gln, Glu, Lys, Ser, Phe, Trp, Tyr, Cha (ß-cyclohexylalanine), Aib (α-aminoisobutyric acid), Gly, and Val] at multiple elevated temperatures in ethanol with ion mobility spectrometry-mass spectrometry (IMS-MS). When Xaa is an amino acid with a charged or polar side chain, degradation is relatively fast. When Xaa is an amino acid with a nonpolar alkyl side chain, the peptide is relatively stable. For these peptides, a bulky group on the α carbon speeds up dissociation, but the kinetic effects vary in a complicated manner for bulky groups on the ß or γ carbon. Peptides where Xaa has a nonpolar aromatic side chain show moderate dissociation rates. The stability of these peptides is a result of multiple factors. The reaction rate is enhanced by (1) the stabilization of the late transition state through the interaction of an aromatic ring with the nascent DKP ring or lowering the activation energy of nucleophilic attack intermediate state through polar or charged residues and (2) the preference of the cis proline bond favored by the aromatic N-terminus. The number of unseen intermediates and transition state thermodynamic values are derived for each peptide by modeling the kinetics data. Most of the transition states are entropically favored (ΔS⧧ ∼ -5 to +31 J·mol-1·K-1), and all are enthalpically disfavored (ΔH⧧ ∼ 93 to 109 kJ·mol-1). The Gibbs free energy of activation is similar for all of the peptides studied here (ΔG⧧ ∼ 90-99 kJ·mol-1).


Asunto(s)
Dicetopiperazinas , Péptidos , Secuencia de Aminoácidos , Aminoácidos , Carbono , Péptidos/química , Prolina/química
18.
J Am Chem Soc ; 144(6): 2667-2678, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35107280

RESUMEN

Chaperonins are nanomachines that harness ATP hydrolysis to power and catalyze protein folding, a chemical action that is directly linked to the maintenance of cell function through protein folding/refolding and assembly. GroEL and the GroEL-GroES complex are archetypal examples of such protein folding machines. Here, variable-temperature electrospray ionization (vT-ESI) native mass spectrometry is used to delineate the effects of solution temperature and ATP concentrations on the stabilities of GroEL and GroEL-GroES complexes. The results show clear evidence for destabilization of both GroEL14 and GroES7 at temperatures of 50 and 45 °C, respectively, substantially below the previously reported melting temperature (Tm ∼ 70 °C). This destabilization is accompanied by temperature-dependent reaction products that have previously unreported stoichiometries, viz. GroEL14-GroESy-ATPn, where y = 1, 2, 8 and n = 0, 1, 2, 8, that are also dependent on Mg2+ and ATP concentrations. Variable-temperature native mass spectrometry reveals new insights about the stability of GroEL in response to temperature effects: (i) temperature-dependent ATP binding to GroEL; (ii) effects of temperature as well as Mg2+ and ATP concentrations on the stoichiometry of the GroEL-GroES complex, with Mg2+ showing greater effects compared to ATP; and (iii) a change in the temperature-dependent stoichiometries of the GroEL-GroES complex (GroEL14-GroES7 vs GroEL14-GroES8) between 24 and 40 °C. The similarities between results obtained by using native MS and cryo-EM [Clare et al. An expanded protein folding cage in the GroEL-gp31 complex. J. Mol. Biol. 2006, 358, 905-911; Ranson et al. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes.Nat. Struct. Mol. Biol. 2006, 13, 147-152] underscore the utility of native MS for investigations of molecular machines as well as identification of key intermediates involved in the chaperonin-assisted protein folding cycle.


Asunto(s)
Adenosina Trifosfato/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Magnesio/metabolismo , Chaperonina 10/química , Chaperonina 60/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligandos , Espectrometría de Masas , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Desplegamiento Proteico , Temperatura
19.
Molecules ; 27(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35164008

RESUMEN

Gangliosides (GGs) represent an important class of biomolecules associated with the central nervous system (CNS). In view of their special role at a CNS level, GGs are valuable diagnostic markers and prospective therapeutic agents. By ion mobility separation mass spectrometry (IMS MS), recently implemented by us in the investigation of human CNS gangliosidome, we previously discovered a similarity between GG profiles in CSF and the brain. Based on these findings, we developed IMS tandem MS (MS/MS) to characterize rare human CSF glycoforms, with a potential biomarker role. To investigate the oligosaccharide and ceramide structures, the ions detected following IMS MS separation were submitted to structural analysis by collision-induced dissociation (CID) MS/MS in the transfer cell. The IMS evidence on only one mobility feature, together with the diagnostic fragment ions, allowed the unequivocal identification of isomers in the CSF. Hence, by IMS MS/MS, GalNAc-GD1c(d18:1/18:1) and GalNAc-GD1c(d18:1/18:0) having both Neu5Ac residues and GalNAc attached to the external galactose were for the first time discovered and structurally characterized. The present results demonstrate the high potential of IMS MS/MS for biomarker discovery and characterization in body fluids, and the perspectives of method implementation in clinical analyses targeting the early diagnosis of CNS diseases through molecular fingerprints.


Asunto(s)
Glicoesfingolípidos/líquido cefalorraquídeo , Glicoesfingolípidos/química , Ácido N-Acetilneuramínico/química , Adulto , Secuencia de Carbohidratos , Gangliósidos/líquido cefalorraquídeo , Gangliósidos/química , Humanos , Espectrometría de Movilidad Iónica , Isomerismo , Meningitis/líquido cefalorraquídeo , Meningitis/diagnóstico , Modelos Moleculares , Ácido N-Acetilneuramínico/líquido cefalorraquídeo , Espectrometría de Masas en Tándem/métodos
20.
Annu Rev Biophys ; 51: 63-77, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-34932911

RESUMEN

The structures and conformational dynamics of proteins, protein complexes, and their noncovalent interactions with other molecules are controlled specifically by the Gibbs free energy (entropy and enthalpy) of the system. For some organisms, temperature is highly regulated, but the majority of biophysical studies are carried out at room, nonphysiological temperature. In this review, we describe variable-temperature electrospray ionization (vT-ESI) mass spectrometry (MS)-based studies with unparalleled sensitivity, dynamic range, and selectivity for studies of both cold- and heat-induced chemical processes. Such studies provide direct determinations of stabilities, reactivities, and thermodynamic measurements for native and non-native structures of proteins and protein complexes and for protein-ligand interactions. Highlighted in this review are vT-ESI-MS studies that reveal 40 different conformers of chymotrypsin inhibitor 2, a classic two-state (native → unfolded) unfolder, and thermochemistry for a model membrane protein system binding lipid and its regulatory protein.


Asunto(s)
Pliegue de Proteína , Espectrometría de Masa por Ionización de Electrospray , Ligandos , Espectrometría de Masa por Ionización de Electrospray/métodos , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA