Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
2.
iScience ; 27(4): 109576, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38638836

RESUMEN

AML is characterized by mutations in genes associated with growth regulation such as internal tandem duplications (ITD) in the receptor kinase FLT3. Inhibitors targeting FLT3 (FLT3i) are being used to treat patients with FLT3-ITD+ but most relapse and become resistant. To elucidate the resistance mechanism, we compared the gene regulatory networks (GRNs) of leukemic cells from patients before and after relapse, which revealed that the GRNs of drug-responsive patients were altered by rewiring their AP-1-RUNX1 axis. Moreover, FLT3i induces the upregulation of signaling genes, and we show that multiple cytokines, including interleukin-3 (IL-3), can overcome FLT3 inhibition and send cells back into cycle. FLT3i leads to loss of AP-1 and RUNX1 chromatin binding, which is counteracted by IL-3. However, cytokine-mediated drug resistance can be overcome by a pan-RAS inhibitor. We show that cytokines instruct AML growth via the transcriptional regulators AP-1 and RUNX1 and that pan-RAS drugs bypass this barrier.

3.
Nat Commun ; 15(1): 1359, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355578

RESUMEN

Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations, maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However, patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here, we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model, we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Células Madre/metabolismo , Células Madre Neoplásicas/metabolismo
5.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37989524

RESUMEN

Tissue-specific gene regulation during development involves the interplay between transcription factors and epigenetic regulators binding to enhancer and promoter elements. The pattern of active enhancers defines the cellular differentiation state. However, developmental gene activation involves a previous step called chromatin priming which is not fully understood. We recently developed a genome-wide functional assay that allowed us to functionally identify enhancer elements integrated in chromatin regulating five stages spanning the in vitro differentiation of embryonic stem cells to blood. We also measured global chromatin accessibility, histone modifications, and transcription factor binding. The integration of these data identified and characterised cis-regulatory elements which become activated before the onset of gene expression, some of which are primed in a signalling-dependent fashion. Deletion of such a priming element leads to a delay in the up-regulation of its associated gene in development. Our work uncovers the details of a complex network of regulatory interactions with the dynamics of early chromatin opening being at the heart of dynamic tissue-specific gene expression control.


Asunto(s)
Cromatina , Secuencias Reguladoras de Ácidos Nucleicos , Cromatina/genética , Diferenciación Celular/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética
6.
Cell Rep ; 42(12): 113568, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38104314

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous disease caused by different mutations. Previously, we showed that each mutational subtype develops its specific gene regulatory network (GRN) with transcription factors interacting within multiple gene modules, many of which are transcription factor genes themselves. Here, we hypothesize that highly connected nodes within such networks comprise crucial regulators of AML maintenance. We test this hypothesis using FLT3-ITD-mutated AML as a model and conduct an shRNA drop-out screen informed by this analysis. We show that AML-specific GRNs predict crucial regulatory modules required for AML growth. Furthermore, our work shows that all modules are highly connected and regulate each other. The careful multi-omic analysis of the role of one (RUNX1) module by shRNA and chemical inhibition shows that this transcription factor and its target genes stabilize the GRN of FLT3-ITD+ AML and that its removal leads to GRN collapse and cell death.


Asunto(s)
Redes Reguladoras de Genes , Leucemia Mieloide Aguda , Humanos , Regulón , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación/genética , ARN Interferente Pequeño , Tirosina Quinasa 3 Similar a fms/genética
7.
Nat Commun ; 14(1): 6947, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935654

RESUMEN

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Asunto(s)
Factores Reguladores del Interferón , Linfoma , Humanos , Linfocitos B/metabolismo , ADN , Regulación de la Expresión Génica , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Linfoma/genética
8.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503022

RESUMEN

AML is a heterogenous disease caused by different mutations. We have previously shown that each mutational sub-type develops its specific gene regulatory network (GRN) with transcription factors interacting with multiple gene modules, many of which are transcription factor genes themselves. Here we hypothesized that highly connected nodes within such networks comprise crucial regulators of AML maintenance. We tested this hypothesis using FLT3-ITD mutated AML as a model and conducted an shRNA drop-out screen informed by this analysis. We show that AML-specific GRNs predict identifying crucial regulatory modules required for AML but not normal cellular growth. Furthermore, our work shows that all modules are highly connected and regulate each other. The careful multi-omic analysis of the role of one (RUNX1) module by shRNA and chemical inhibition shows that this transcription factor and its target genes stabilize the GRN of FLT3-ITD AML and that its removal leads to GRN collapse and cell death.

9.
Leukemia ; 37(1): 102-112, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36333583

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy caused by mutations in genes encoding transcriptional and epigenetic regulators together with signaling genes. It is characterized by a disturbance of differentiation and abnormal proliferation of hematopoietic progenitors. We have previously shown that each AML subtype establishes its own core gene regulatory network (GRN), consisting of transcription factors binding to their target genes and imposing a specific gene expression pattern that is required for AML maintenance. In this study, we integrate gene expression, open chromatin and ChIP data with promoter-capture Hi-C data to define a refined core GRN common to all patients with CEBPA-double mutant (CEBPAN/C) AML. These mutations disrupt the structure of a major regulator of myelopoiesis. We identify the binding sites of mutated C/EBPα proteins in primary cells, we show that C/EBPα, AP-1 factors and RUNX1 colocalize and are required for AML maintenance, and we employ single cell experiments to link important network nodes to the specific differentiation trajectory from leukemic stem to blast cells. Taken together, our study provides an important resource which predicts the specific therapeutic vulnerabilities of this AML subtype in human cells.


Asunto(s)
Redes Reguladoras de Genes , Leucemia Mieloide Aguda , Humanos , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Mutación , Diferenciación Celular/genética , Leucemia Mieloide Aguda/patología
10.
Blood ; 140(17): 1875-1890, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35839448

RESUMEN

The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemotherapies and immunotherapies. In this study, the myeloid relapses shared oncogene fusion breakpoints with their matched lymphoid presentations and originated from various differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programs, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.


Asunto(s)
Proteína de la Leucemia Mieloide-Linfoide , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Epigénesis Genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Genes Reguladores , Cromatina
11.
Exp Hematol ; 111: 1-12, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35341804

RESUMEN

The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current literature on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the structure of the RUNX1 protein itself, and place these changes in the context of what is known about RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and discuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells on the path to malignancy.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Enfermedades Hematológicas , Cromatina/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Enfermedades Hematológicas/genética , Hematopoyesis/genética , Humanos , Mutación
12.
Blood ; 137(24): 3321-3322, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34137844
13.
Front Immunol ; 12: 642807, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108962

RESUMEN

T cell immunological memory is established within days of an infection, but little is known about the in vivo changes in gene regulatory networks accounting for their ability to respond more efficiently to secondary infections. To decipher the timing and nature of immunological memory we performed genome-wide analyses of epigenetic and transcriptional changes in a mouse model generating antigen-specific T cells. Epigenetic reprogramming for Th differentiation and memory T cell formation was already established by the peak of the T cell response after 7 days. The Th memory T cell program was associated with a gain of open chromatin regions, enriched for RUNX, ETS and T-bet motifs, which remained stable for 56 days. The epigenetic programs for both effector memory, associated with T-bet, and central memory, associated with TCF-1, were established in parallel. Memory T cell-specific regulatory elements were associated with greatly enhanced inducible Th1-biased responses during secondary exposures to antigen. Furthermore, memory T cells responded in vivo to re-exposure to antigen by rapidly reprograming the entire ETS factor gene regulatory network, by suppressing Ets1 and activating Etv6 expression. These data show that gene regulatory networks are epigenetically reprogrammed towards memory during infection, and undergo substantial changes upon re-stimulation.


Asunto(s)
Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Epigénesis Genética , Redes Reguladoras de Genes , Memoria Inmunológica , Animales , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo
14.
Cell Rep ; 35(3): 109010, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33882316

RESUMEN

Acute myeloid leukemia (AML) is caused by recurrent mutations in members of the gene regulatory and signaling machinery that control hematopoietic progenitor cell growth and differentiation. Here, we show that the transcription factor WT1 forms a major node in the rewired mutation-specific gene regulatory networks of multiple AML subtypes. WT1 is frequently either mutated or upregulated in AML, and its expression is predictive for relapse. The WT1 protein exists as multiple isoforms. For two main AML subtypes, we demonstrate that these isoforms exhibit differential patterns of binding and support contrasting biological activities, including enhanced proliferation. We also show that WT1 responds to oncogenic signaling and is part of a signaling-responsive transcription factor hub that controls AML growth. WT1 therefore plays a central and widespread role in AML biology.


Asunto(s)
Cromatina/química , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Redes Reguladoras de Genes , Leucemia Mieloide Aguda/genética , Neoplasias Pulmonares/genética , Proteínas WT1/genética , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Cromatina/metabolismo , Cromosomas Humanos Par 21 , Cromosomas Humanos Par 8 , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Leucemia Mieloide Aguda/clasificación , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/genética , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Transducción de Señal , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Translocación Genética , Proteínas WT1/antagonistas & inhibidores , Proteínas WT1/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
15.
Exp Hematol ; 92: 62-74, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33152396

RESUMEN

Acute myeloid leukemia development occurs in a stepwise fashion whereby an original driver mutation is followed by additional mutations. The first type of mutations tends to be in genes encoding members of the epigenetic/transcription regulatory machinery (i.e., RUNX1, DNMT3A, TET2), while the secondary mutations often involve genes encoding members of signaling pathways that cause uncontrolled growth of such cells such as the growth factor receptors c-KIT of FLT3. Patients usually present with both types of mutations, but it is currently unclear how both mutational events shape the epigenome in developing AML cells. To this end we generated an in vitro model of t(8;21) AML by expressing its driver oncoprotein RUNX1-ETO with or without a mutated (N822K) KIT protein. Expression of N822K-c-KIT strongly increases the self-renewal capacity of RUNX1-ETO-expressing cells. Global analysis of gene expression changes and alterations in the epigenome revealed that N822K-c-KIT expression profoundly influences the open chromatin landscape and transcription factor binding. However, our experiments also revealed that double mutant cells still differ from their patient-derived counterparts, highlighting the importance of studying patient cells to obtain a true picture of how gene regulatory networks have been reprogrammed during tumorigenesis.


Asunto(s)
Cromatina/metabolismo , Cromosomas Humanos Par 21 , Cromosomas Humanos Par 8 , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Leucemia Mieloide Aguda , Mutación Missense , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Transcripción Genética , Translocación Genética , Sustitución de Aminoácidos , Cromatina/patología , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 21/metabolismo , Cromosomas Humanos Par 8/genética , Cromosomas Humanos Par 8/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Femenino , Regulación Leucémica de la Expresión Génica , Células HEK293 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Masculino , Proteínas Proto-Oncogénicas c-kit/genética , Proteína 1 Compañera de Translocación de RUNX1/genética
16.
EMBO J ; 39(22): e105220, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32930455

RESUMEN

When dormant naïve T cells first become activated by antigen-presenting cells, they express the autocrine growth factor IL-2 which transforms them into rapidly dividing effector T cells. During this process, hundreds of genes undergo epigenetic reprogramming for efficient activation, and also for potential reactivation after they return to quiescence as memory T cells. However, the relative contributions of IL-2 and T cell receptor signaling to this process are unknown. Here, we show that IL-2 signaling is required to maintain open chromatin at hundreds of gene regulatory elements, many of which control subsequent stimulus-dependent alternative pathways of T cell differentiation. We demonstrate that IL-2 activates binding of AP-1 and STAT5 at sites that can subsequently bind lineage-determining transcription factors, depending upon what other external factors exist in the local T cell environment. Once established, priming can also be maintained by the stroma-derived homeostatic cytokine IL-7, and priming diminishes if Il7r is subsequently deleted in vivo. Hence, IL-2 is not just a growth factor; it lays the foundation for T cell differentiation and immunological memory.


Asunto(s)
Diferenciación Celular/fisiología , Factor VII/metabolismo , Interleucina-2/metabolismo , Interleucina-7/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Cromatina/metabolismo , Citocinas/metabolismo , Epigenómica , Factor VII/genética , Regulación de la Expresión Génica , Memoria Inmunológica , Interleucina-2/genética , Interleucina-7/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factores de Transcripción
17.
Cell Rep ; 31(10): 107748, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32521273

RESUMEN

Immunological homeostasis in T cells is maintained by a tightly regulated signaling and transcriptional network. Full engagement of effector T cells occurs only when signaling exceeds a critical threshold that enables induction of immune response genes carrying an epigenetic memory of prior activation. Here we investigate the underlying mechanisms causing the suppression of normal immune responses when T cells are rendered anergic by tolerance induction. By performing an integrated analysis of signaling, epigenetic modifications, and gene expression, we demonstrate that immunological tolerance is established when both signaling to and chromatin priming of immune response genes are weakened. In parallel, chromatin priming of immune-repressive genes becomes boosted, rendering them sensitive to low levels of signaling below the threshold needed to activate immune response genes. Our study reveals how repeated exposure to antigens causes an altered epigenetic state leading to T cell anergy and tolerance, representing a basis for treating auto-immune diseases.


Asunto(s)
Cromatina/genética , Epigenómica/métodos , Tolerancia Inmunológica/genética , Linfocitos T/inmunología , Animales , Homeostasis , Ratones , Transducción de Señal
19.
Cell Rep ; 28(12): 3022-3031.e7, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533028

RESUMEN

Acute myeloid leukemia (AML) is associated with mutations in transcriptional and epigenetic regulator genes impairing myeloid differentiation. The t(8;21)(q22;q22) translocation generates the RUNX1-ETO fusion protein, which interferes with the hematopoietic master regulator RUNX1. We previously showed that the maintenance of t(8;21) AML is dependent on RUNX1-ETO expression. Its depletion causes extensive changes in transcription factor binding, as well as gene expression, and initiates myeloid differentiation. However, how these processes are connected within a gene regulatory network is unclear. To address this question, we performed Promoter-Capture Hi-C assays, with or without RUNX1-ETO depletion and assigned interacting cis-regulatory elements to their respective genes. To construct a RUNX1-ETO-dependent gene regulatory network maintaining AML, we integrated cis-regulatory element interactions with gene expression and transcription factor binding data. This analysis shows that RUNX1-ETO participates in cis-regulatory element interactions. However, differential interactions following RUNX1-ETO depletion are driven by alterations in the binding of RUNX1-ETO-regulated transcription factors.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Elementos de Facilitación Genéticos , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda , Proteínas de Fusión Oncogénica , Regiones Promotoras Genéticas , Proteína 1 Compañera de Translocación de RUNX1 , Factor de Transcripción AP-1 , Translocación Genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 21/metabolismo , Cromosomas Humanos Par 8/genética , Cromosomas Humanos Par 8/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Eliminación de Gen , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/genética , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
20.
Cancer Inform ; 18: 1176935119859863, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263370

RESUMEN

Acute myeloid leukemia (AML) is a highly heterogeneous cancer associated with different patterns of gene expression determined by the nature of their DNA mutations. These mutations mostly act to deregulate gene expression by various mechanisms at the level of the nucleus. By performing genome-wide epigenetic profiling of cis-regulatory elements, we found that AML encompasses different mutation-specific subclasses associated with the rewiring of the gene regulatory networks that drive differentiation into different directions away from normal myeloid development. By integrating epigenetic profiles with gene expression and chromatin conformation data, we defined pathways within gene regulation networks that were differentially rewired within each mutation-specific subclass of AML. This analysis revealed 2 major classes of AML: one class defined by mutations in signaling molecules that activate AP-1 via the mitogen-activated protein (MAP) kinase pathway and a second class defined by mutations within genes encoding transcription factors such as RUNX1/CBFß and C/EBPα. By identifying specific DNA motifs protected from DNase I digestion at cis-regulatory elements, we were able to infer candidate transcription factors bound to these motifs. These integrated analyses allowed the identification of AML subtype-specific core regulatory networks that are required for AML development and maintenance, which could now be targeted in personalized therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA