Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Hum Evol ; 133: 99-107, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31358186

RESUMEN

The African savannas that many early hominins occupied likely experienced stark seasonality and contained mosaic habitats (i.e., combinations of woodlands, wetlands, grasslands, etc.). Most would agree that the bulk of dietary calories obtained by taxa such as Australopithecus and Paranthropus came from the consumption of vegetation growing across these landscapes. It is also likely that many early hominins were selective feeders that consumed particular plants/plant parts (e.g., leaves, fruit, storage organs) depending on the habitat and season within which they were foraging. Thus, improving our understanding of how the nutritional properties of potential hominin plant foods growing in modern African savanna ecosystems respond to season and vary by habitat will improve our ability to model early hominin dietary behavior. Here, we present nutritional analyses (crude protein and acid detergent fiber) of plants growing in eastern and southern African savanna habitats across both wet and dry seasons. We find that many assumptions about savanna vegetation are warranted. For instance, plants growing in our woodland habitats have higher average protein/fiber ratios than those growing in our wetland and grassland transects. However, we find that the effects of season and habitat are complex, an example being the unexpectedly higher protein levels we observe in the grasses and sedges growing in our Amboseli wetlands during the dry season. Also, we find significant differences between the vegetation growing in our eastern and southern African field sites, particularly among plants using the C4 photosynthetic pathway. This may have implications for the differences we see between the stable carbon isotope compositions and dental microwear patterns of eastern and southern African Paranthropus species, despite their shared, highly derived craniodental anatomy.


Asunto(s)
Bosques , Pradera , Hominidae/fisiología , Valor Nutritivo , Plantas/química , Humedales , Animales , Kenia , Estaciones del Año , Suelo/química , Sudáfrica
2.
Ecol Evol ; 8(8): 3983-3995, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721273

RESUMEN

Stable carbon isotope analyses of vertebrate hard tissues such as bones, teeth, and tusks provide information about animal diets in ecological, archeological, and paleontological contexts. There is debate about how carbon isotope compositions of collagen and apatite carbonate differ in terms of their relationship to diet, and to each other. We evaluated relationships between δ13Ccollagen and δ13Ccarbonate among free-ranging southern African mammals to test predictions about the influences of dietary and physiological differences between species. Whereas the slopes of δ13Ccollagen-δ13Ccarbonate relationships among carnivores are ≤1, herbivore δ13Ccollagen increases with increasing dietary δ13C at a slower rate than does δ13Ccarbonate, resulting in regression slopes >1. This outcome is consistent with predictions that herbivore δ13Ccollagen is biased against low protein diet components (13C-enriched C4 grasses in these environments), and δ13Ccarbonate is 13C-enriched due to release of 13C-depleted methane as a by-product of microbial fermentation in the digestive tract. As methane emission is constrained by plant secondary metabolites in browse, the latter effect becomes more pronounced with higher levels of C4 grass in the diet. Increases in δ13Ccarbonate are also larger in ruminants than nonruminants. Accordingly, we show that Δ13Ccollagen-carbonate spacing is not constant within herbivores, but increases by up to 5 ‰ across species with different diets and physiologies. Such large variation, often assumed to be negligible within trophic levels, clearly cannot be ignored in carbon isotope-based diet reconstructions.

3.
J Hum Evol ; 117: 44-52, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29544623

RESUMEN

Discussions about early hominin diets have generally excluded grass leaves as a staple food resource, despite their ubiquity in most early hominin habitats. In particular, stable carbon isotope studies have shown a prevalent C4 component in the diets of most taxa, and grass leaves are the single most abundant C4 resource in African savannas. Grass leaves are typically portrayed as having little nutritional value (e.g., low in protein and high in fiber) for hominins lacking specialized digestive systems. It has also been argued that they present mechanical challenges (i.e., high toughness) for hominins with bunodont dentition. Here, we compare the nutritional and mechanical properties of grass leaves with the plants growing alongside them in African savanna habitats. We also compare grass leaves to the leaves consumed by other hominoids and demonstrate that many, though by no means all, compare favorably with the nutritional and mechanical properties of known primate foods. Our data reveal that grass leaves exhibit tremendous variation and suggest that future reconstructions of hominin dietary ecology take a more nuanced approach when considering grass leaves as a potential hominin dietary resource.


Asunto(s)
Dieta , Hominidae/fisiología , Evaluación Nutricional , Poaceae/fisiología , Animales , Evolución Biológica , Fenómenos Biomecánicos , Pradera , Kenia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Poaceae/anatomía & histología , Sudáfrica
4.
Integr Zool ; 13(2): 166-179, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29168617

RESUMEN

Predator-prey size relationships are among the most important patterns underlying the structure and function of ecological communities. Indeed, these relationships have already been shown to be important for understanding patterns of macroevolution and differential extinction in the terrestrial vertebrate fossil record. Stable isotope analysis (SIA) is a powerful remote approach to examining animal diets and paleodiets. The approach is based on the principle that isotope compositions of consumer tissues reflect those of their prey. In systems where resource isotope compositions are distributed along a body size gradient, SIA could be used to reconstruct predator-prey size relationships. We analyzed stable carbon isotope distributions amongst mammalian herbivores in extant and Plio-Pleistocene African savanna assemblages, and show that the range of δ13 C values among mammalian prey species (herbivores and rodents) increases with body mass (BM), because C4 plant feeding (essentially grazing) is more common among larger taxa. Consequently, δ13 C values of mammalian carnivores in these systems are related to species' BM, reflecting a higher average C4 prey component in the diets of larger-bodied carnivores. This pattern likely emerges because only the largest carnivores in these systems have regular access to the C4 prey base, whereas smaller carnivores do not. The δ13 C-BM relationship observed in mammalian carnivores is a potentially powerful approach for reconstructing and parameterizing predator-prey size relationships in contemporary and fossil savanna assemblages, and for interpreting how various behavioral, ecological and environmental factors influence prey size selection.


Asunto(s)
Tamaño Corporal , Carbono/química , Carnívoros/fisiología , Pradera , Conducta Predatoria , África , Animales , Isótopos de Carbono , Cadena Alimentaria , Fósiles , Herbivoria
5.
Proc Biol Sci ; 279(1737): 2433-41, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22337695

RESUMEN

Longitudinal studies have revealed how variation in resource use within consumer populations can impact their dynamics and functional significance in communities. Here, we investigate multi-decadal diet variations within individuals of a keystone megaherbivore species, the African elephant (Loxodonta africana), using serial stable isotope analysis of tusks from the Kruger National Park, South Africa. These records, representing the longest continuous diet histories documented for any extant species, reveal extensive seasonal and annual variations in isotopic--and hence dietary--niches of individuals, but little variation between them. Lack of niche distinction across individuals contrasts several recent studies, which found relatively high levels of individual niche specialization in various taxa. Our result is consistent with theory that individual mammal herbivores are nutritionally constrained to maintain broad diet niches. Individual diet specialization would also be a costly strategy for large-bodied taxa foraging over wide areas in spatio-temporally heterogeneous environments. High levels of within-individual diet variability occurred within and across seasons, and persisted despite an overall increase in inferred C(4) grass consumption through the twentieth century. We suggest that switching between C(3) browsing and C(4) grazing over extended time scales facilitates elephant survival through environmental change, and could even allow recovery of overused resources.


Asunto(s)
Adaptación Biológica/fisiología , Isótopos de Carbono/análisis , Dieta , Elefantes , Isótopos de Nitrógeno/análisis , Isótopos de Oxígeno/análisis , Diente/química , Determinación de la Edad por los Dientes/métodos , Determinación de la Edad por los Dientes/veterinaria , Animales , Dentina/química , Modelos Lineales , Espectrometría de Masas , Sudáfrica , Diente/anatomía & histología
6.
Oecologia ; 165(1): 89-99, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21072541

RESUMEN

The African elephant (Loxodonta africana) is a large-bodied, generalist herbivore that eats both browse and grass. The proportions of browse and grass consumed are largely expected to reflect the relative availability of these resources. We investigated variations in browse (C(3) biomass) and grass (C(4)) intake of the African elephant across seasons and habitats by stable carbon isotope analysis of elephant feces collected from Kruger National Park, South Africa. The results reflect a shift in diet from higher C(4) grass intake during wet season months to more C(3) browse-dominated diets in the dry season. Seasonal trends were correlated with changes in rainfall and with nitrogen (%N) content of available grasses, supporting predictions that grass is favored when its availability and nutritional value increase. However, switches to dry season browsing were significantly smaller in woodland and grassland habitats where tree communities are dominated by mopane (Colophospermum mopane), suggesting that grasses were favored here even in the dry season. Regional differences in diet did not reflect differences in grass biomass, tree density, or canopy cover. There was a consistent relationship between %C(4) intake and tree species diversity, implying that extensive browsing is avoided in habitats characterized by low tree species diversity and strong dominance patterns, i.e., mopane-dominated habitats. Although mopane is known to be a preferred species, maintaining dietary diversity appears to be a constraint to elephants, which they can overcome by supplementing their diets with less abundant resources (dry season grass). Such variations in feeding behavior likely influence the degree of impact on plant communities and can therefore provide key information for managing elephants over large, spatially diverse, areas.


Asunto(s)
Elefantes/fisiología , Ambiente , Heces/química , Conducta Alimentaria , Animales , Isótopos de Carbono , Preferencias Alimentarias , Estaciones del Año
7.
Am J Phys Anthropol ; 129(2): 204-14, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16247809

RESUMEN

Baboons are dietary generalists, consuming a wide range of food items in varying proportions. It is thus difficult to quantify and explain the dietary behavior of these primates. We present stable carbon (delta(13)C) and nitrogen (delta(15)N) isotopic data, and percentage nitrogen (%N), of feces from chacma baboons (Papio ursinus) living in two savanna environments of South Africa: the mountainous Waterberg region and the low-lying Kruger National Park. Baboons living in the more homogeneous landscapes of the Waterberg consume a more isotopically heterogeneous diet than their counterparts living in Kruger Park. Grasses and other C(4)-based foods comprise between approximately 10-20% (on average) of the bulk diet of Kruger Park baboons. Carbon isotopic data from the Waterberg suggest diets of approximately 30-50% grass, which is higher than generally reported for baboons across the African savanna. Based on observations of succulent-feeding, we propose that baboons in the Waterberg consume a mix of C(4) grasses and CAM-photosynthesizing succulents in combined proportions varying between approximately 5-75% (average, approximately 35%). Fecal delta(15)N of baboons is lower than that of sympatric ungulates, which may be due to a combination of low levels of faunivory, foraging on subterranean plant parts, or the use of human foods in the case of Kruger Park populations. Fecal N levels in baboons are consistently higher than those of sympatric ungulate herbivores, indicating that baboons consume a greater proportion of protein-rich foods than do other savanna mammals. These data suggest that chacma baboons adapt their dietary behavior so as to maximize protein intake, regardless of their environment.


Asunto(s)
Dieta , Ambiente , Heces/química , Papio ursinus/fisiología , Análisis de Varianza , Animales , Isótopos de Carbono/análisis , Espectrometría de Masas , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Poaceae , Estaciones del Año , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA