RESUMEN
The oleaginous yeast species Rhodotorula toruloides is a promising candidate for applications in circular bioeconomy due to its ability to efficiently utilize diverse carbon sources being tolerant to cellular stress in bioprocessing. Previous studies including genome-wide analyses of the multi-stress tolerant strain IST536 MM15, derived through adaptive laboratory evolution from a promising IST536 strain for lipid production from sugar beet hydrolysates, suggested the occurrence of significant modifications in the cell wall. In this study, the cell wall integrity and carbohydrate composition of those strains was characterized to gain insights into the physicochemical changes associated to the remarkable multi-stress tolerance phenotype of the evolved strain. Compared to the original strain, the evolved strain exhibited a higher proportion of glucomannans, fucogalactomannans, and chitin relative to (1â4)-linked glucans, and an increased presence of glycoproteins with short glucosamine derived oligosaccharides, which have been found to be associated to ethanol stress tolerance and physical strength of the cell wall. Furthermore, the evolved strain cells were found to be significantly smaller than the original strain and more resistant to thermal and mechanical disruption, consistent with higher proportion of beta-linked polymers instead of glycogen, conferring a more rigid and robust cell wall. These findings provide further insights into the cell wall composition of this basidiomycetous red yeast species and into the alterations occurring in a multi-stress tolerant evolved strain. This new information can guide yeast genome engineering towards more robust strains of biotechnological relevance.
Asunto(s)
Pared Celular , Rhodotorula , Estrés Fisiológico , Rhodotorula/genética , Rhodotorula/metabolismo , Pared Celular/metabolismoRESUMEN
Brewer's spent yeast (BSY) mannoproteins have been reported to possess thickening and emulsifying properties. The commercial interest in yeast mannoproteins might be boosted considering the consolidation of their properties supported by structure/function relationships. This work aimed to attest the use of extracted BSY mannoproteins as a clean label and vegan source of ingredients for the replacement of food additives and protein from animal sources. To achieve this, structure/function relationships were performed by isolating polysaccharides with distinct structural features from BSY, either by using alkaline extraction (mild treatment) or subcritical water extraction (SWE) using microwave technology (hard treatment), and assessment of their emulsifying properties. Alkaline extractions solubilized mostly highly branched mannoproteins (N-linked type; 75%) and glycogen (25%), while SWE solubilized mannoproteins with short mannan chains (O-linked type; 55%) and (1â4)- and (ß1â3)-linked glucans, 33 and 12%, respectively. Extracts with high protein content yielded the most stable emulsions obtained by hand shaking, while the extracts composed of short chain mannans and ß-glucans yielded the best emulsions by using ultraturrax stirring. ß-Glucans and O-linked mannoproteins were found to contribute to emulsion stability by preventing Ostwald ripening. When applied in mayonnaise model emulsions, BSY extracts presented higher stability and yet similar texture properties as the reference emulsifiers. When used in a mayonnaise formulation, the BSY extracts were also able to replace egg yolk and modified starch (E1422) at 1/3 of their concentration. This shows that BSY alkali soluble mannoproteins and subcritical water extracted ß-glucans can be used as replacers of animal protein and additives in sauces.
Asunto(s)
Saccharomyces cerevisiae , beta-Glucanos , Animales , Humanos , Saccharomyces cerevisiae/metabolismo , Emulsiones/metabolismo , Veganos , Polisacáridos/química , Mananos/metabolismo , Agua/análisis , Pared Celular/química , beta-Glucanos/metabolismo , Extractos Vegetales/análisisRESUMEN
Brewer's spent yeast (BSY) microcapsules have a complex network of cell-wall polysaccharides that are induced by brewing when compared to the baker's yeast (Saccharomyces cerevisiae) microcapsules. These are rich in (ß1â3)-glucans and covalently linked to (α1â4)- and (ß1â4)-glucans in addition to residual mannoproteins. S. cerevisiae is often used as a drug delivery system due to its immunostimulatory potential conferred by the presence of (ß1â3)-glucans. Similarly, BSY microcapsules could also be used in the encapsulation of compounds or drug delivery systems with the advantage of resisting digestion conferred by (ß1â4)-glucans and promoting a broader immunomodulatory response. This work aims to study the feasibility of BSY microcapsules that are the result of alkali and subcritical water extraction processes, as oral carriers for food and biomedical applications by (1) evaluating the resistance of BSY microcapsules to in vitro digestion (IVD), (2) their recognition by the human Dectin-1 immune receptor after IVD, and (3) the recognition of IVD-solubilized material by different mammalian immune receptors. IVD digested 44-63% of the material, depending on the extraction process. The non-digested material, despite some visible agglutination and deformation of the microcapsules, preserved their spherical shape and was enriched in (ß1â3)-glucans. These microcapsules were all recognized by the human Dectin-1 immune receptor. The digested material was differentially recognized by a variety of lectins of the immune system related to (ß1â3)-glucans, glycogen, and mannans. These results show the potential of BSY microcapsules to be used as oral carriers for food and biomedical applications.
RESUMEN
Brewing practice uses the same yeast to inoculate the following fermentation (repitching). Saccharomyces pastorianus, used to produce Lager beer, is widely reused, not changing its fermentation performance. However, S. cerevisiae, used to produce Ale beer, is partial or not even reused, due to its poor performance. It is hypothesized that cells modulate their wall polysaccharides to increase the cell-wall strength. In this work industrial S. cerevisiae and S. pastorianus brewer's spent yeasts with different repitching numbers were studied. Glucans were the main component of S. cerevisiae whereas mannoproteins were abundant in S. pastorianus. The major changes were noticed on glucans of both species, ß1,3-glucans decrease more pronounced in S. cerevisiae. The increase of α1,4-Glc, related with osmotolerance, was higher in S. cerevisiae while ß1,4-Glc, related with cell-wall strength, had a small increase. In addition, these structural details showed different binding profiles to immune receptors, important to develop tailored bioactive applications.
Asunto(s)
Saccharomyces cerevisiae , Saccharomyces , Pared Celular , Polisacáridos , Receptores Inmunológicos , GlucanosRESUMEN
Systemic fungal infections are associated with significant morbidity and mortality, and Candida albicans is the most common causative agent. Recognition of yeast cells by immune cell surface receptors can trigger phagocytosis of fungal pathogens and a pro-inflammatory response that may contribute to fungal elimination. Nevertheless, the elicited inflammatory response may be deleterious to the host by causing excessive tissue damage. We developed a nanoparticle-based approach to modulate the host deleterious inflammatory consequences of fungal infection by using ß1,3-glucan-functionalized polystyrene (ß-Glc-PS) nanoparticles. ß-Glc-PS nanoparticles decreased the levels of the proinflammatory cytokines TNF-α, IL-6, IL-1ß and IL-12p40 detected in in vitro culture supernatants of bone marrow-derived dendritic cells and macrophage challenged with C. albicans cells. Moreover, ß-Glc-PS nanoparticles impaired the production of reactive oxygen species by bone marrow-derived dendritic cells incubated with C. albicans. This immunomodulatory effect was dependent on the nanoparticle size. Overall, ß-Glc-PS nanoparticles reduced the proinflammatory response elicited by fungal cells in mononuclear phagocytes, setting the basis for a targeted therapy aimed at protecting the host by lowering the inflammatory cost of infection.
RESUMEN
This study explores the structural characterization, antioxidant and prebiotic activities of hydrolysates containing xylooligosaccharides (XOS) produced by different strategies: direct fermentation of beechwood xylan (FermBX) and enzymatic treatment of beechwood (EnzBX) and rice husk (EnzRH) xylans. EnzBX and EnzRH showed XOS with a backbone of (1 â 4)-linked-xylopyranosyl residues and branches of arabinose, galactose, and uronic acids. FermBX presented the highest content of total phenolic compounds (14 mg GAE/g) and flavonoids (0.6 mg QE/g), which may contribute to its antioxidant capacity -39.1 µmol TE/g (DPPH), 45.7 µmol TE/g (ABTS), and 79.9 µmol Fe II/g (FRAP). The fermentation of hydrolysates decreased the abundance of microorganisms associated with intestinal diseases from Eubacteriales, Desulfovibrionales and Methanobacteriales orders, while stimulating the growth of organisms belonging to Bacteroides, Megamonas and Limosilactobacillus genera. The production of short-chain fatty acids, ammonia, and CO2 suggested the prebiotic potential. In conclusion, hydrolysates without previous purification and obtained from non-chemical approaches demonstrated promising biological activities for further food applications.
Asunto(s)
Antioxidantes , Prebióticos , Endo-1,4-beta Xilanasas/química , Glucuronatos/química , Hidrólisis , Oligosacáridos/química , Xilanos/químicaRESUMEN
The prebiotic potential of fructo-oligosaccharides (microbial-FOS) produced by a newly isolated Aspergillus ibericus, and purified by Saccharomyces cerevisiae YIL162 W, was evaluated. Their chemical structure and functionality were compared to a non-microbial commercial FOS sample. Prebiotics were fermented in vitro by fecal microbiota of five healthy volunteers. Microbial-FOS significantly stimulated the growth of Bifidobacterium probiotic strains, triggering a beneficial effect on gut microbiota composition. A higher amount of total short-chain fatty acids (SCFA) was produced by microbial-FOS fermentation as compared to commercial-FOS, particularly propionate and butyrate. Inulin neoseries oligosaccharides, with a degree of polymerization (DP) up to 5 (e.g., neokestose and neonystose), were identified only in the microbial-FOS mixture. More than 10% of the microbial-oligosaccharides showed a DP higher than 5. Differences identified in the structures of the FOS samples may explain their different functionalities. Results indicate that microbial-FOS exhibit promising potential as nutraceutical ingredients for positive gut microbiota modulation.
RESUMEN
Essential oil (EO), hydrolate, and nondistilled aqueous phase (decoction) obtained from the hydrodistillation of lemongrass byproducts were studied in terms of their potential as food ingredients under a circular economy. The EO (0.21%, dry weight basis) was composed mainly of monoterpenoids (61%), the majority being citral (1.09 g/kg). The minimal inhibitory concentrations (MIC) of lemongrass EO against Escherichia coli, Salmonella enterica, and Staphylococcus aureus, were 617, 1550, and 250 µg/mL, respectively. This effect was dependent on the citral content. Particularly for Gram-negative bacteria, a synergism between citral and the remaining EO compounds enhanced the antimicrobial activity. The polymeric material obtained from the nondistilled aqueous phase was composed of phenolic compounds (25% gallic acid equivalents) and carbohydrates (22%), mainly glucose (66 mol%). This polymeric material showed high antioxidant activity due to bound phenolic compounds, allowing its application as a functional dietary fiber ingredient. Matcha green tea formulations were successfully mixed with lemongrass hydrolate containing 0.21% EO (dry weight basis) with 58% of monoterpenoids, being citral at 0.73 g/kg, minimizing matcha astringency with a citrus flavor and extending the product shelf life. This holistic approach to essential oils' hydrodistillation of Cymbopogon citratus byproducts allows for valorizing of the essential oil, hydrolate, and decoction for use as food ingredients.
Asunto(s)
Cymbopogon , Ingredientes Alimentarios , Aceites Volátiles , Antioxidantes/farmacología , Pruebas de Sensibilidad Microbiana , Monoterpenos , Aceites Volátiles/farmacologíaRESUMEN
Recent advances on brewer's yeast cell wall polysaccharides have unraveled exquisite structural features and diverse composition with (ß1â3), (ß1â6), (α1â4), (ß1â4)-mix-linked glucans that are recognized to interact with different cell receptors and trigger specific biological responses. Herein, a comprehensive showcase of structure-biofunctional relationships between yeast polysaccharides and their biological targets is highlighted, with a focus on polysaccharide features that govern the biomedical activity. The insolubility of ß-glucans is a crucial factor for binding and activation of Dectin-1 receptor, operating as adjuvants of immune responses. Contrarily, soluble low molecular weight ß-glucans have a strong inhibition of reactive oxygen species production, acting as antagonists of Dectin-1 mediated signaling. Soluble glucan-protein moieties can also act as antitumoral agents. The balance between mannoproteins-TLR2 and ß-glucans-Dectin-1 receptors-activation is crucial for osteogenesis. Biomedical applications value can also be obtained from yeast microcapsules as oral delivery systems, where highly branched (ß1â6)-glucans lead to higher receptor affinity.
Asunto(s)
Sistemas de Liberación de Medicamentos , Polisacáridos/química , Saccharomyces cerevisiae/química , Administración Oral , Animales , Pared Celular/química , Humanos , Polisacáridos/administración & dosificaciónRESUMEN
Microbial exopolysaccharides (EPS) are promising alternatives to synthetic polymers in a variety of applications. Their high production costs, however, limit their use despite their outstanding properties. The use of low-cost substrates such as agro-industrial wastes in their production, can help to boost their market competitiveness. In this work, an alternative low-cost culture medium (CSLM) was developed for EPS production by Rhizobium viscosum CECT908, containing sugarcane molasses (60 g/L) and corn steep liquor (10 mL/L) as sole ingredients. This medium allowed the production of 6.1 ± 0.2 g EPS/L, twice the amount produced in the standard medium (Syn), whose main ingredients were glucose and yeast extract. This is the first report of EPS production by R. viscosum using agro-industrial residues as sole substrates. EPSCSLM and EPSSyn exhibited a similar carbohydrate composition, mainly 4-linked galactose, glucose and mannuronic acid. Although both EPS showed a good fit to the Herschel-Bulkley model, EPSCSLM displayed a higher yield stress and flow consistency index when compared with EPSSyn, due to its higher apparent viscosity. EPSCSLM demonstrated its potential use in Microbial Enhanced Oil Recovery by enabling the recovery of nearly 50% of the trapped oil in sand-pack column experiments using a heavy crude oil.
RESUMEN
This work studies the extraction and purification of a novel arabinogalactan from pistachio external hull. It was extracted with a simple method from pistachio hull which is considered as unexploited waste. Based on the results of sugar analysis by GC-FID, glycosidic linkage by GC-MS, NMR spectroscopy, and molecular weight by Size Exclusion Chromatography, pistachio hull water soluble polysaccharides (PHWSP) were identified as a type II arabinogalactan (AG), with characteristic terminally linked α-Araf, (α1 â 5)-Araf, (α1 â 3,5)-Araf, terminally linked ß-Galp, (ß1 â 6)-Galp, and (ß1 â 3,6)-Galp. DEPT-135, HSQC, HMBC and COSY NMR data suggested the presence of (ß1 â 3)-Galp mainly branched at O-6 with (ß1 â 6)-Galp chains, α-Araf chains, and terminally linked α-Araf. These AG from pistachio external hulls showed in vitro stimulatory activity for B cells, suggesting their possible use as an immunological stimulant in nutraceutical and biomedical applications.
Asunto(s)
Pistacia , Galactanos , Peso Molecular , PolisacáridosRESUMEN
Xylose is an abundant bioresource for obtaining diverse chemicals and added-value products. The production of xylose from green alternatives like enzymatic hydrolysis is an important step in a biorefinery context. This research evaluated the synergism among four classes of hydrolytic purified enzymes-endo-1,4-ß-xylanase, α-L-arabinofuranosidase, ß-xylosidase, and α-D-glucuronidase-over hydrolysis of glucuronoarabinoxylan (GAX) obtained from brewers' spent grain (BSG) after alkaline extraction and ethanol precipitation. First, monosaccharides, uronic acids and glycosidic-linkages of alkaline extracted GAX fraction from BSG were characterized, after that different strategies based on the addition of one or two families of enzymes-endo-1,4-ß-xylanase (GH10 and GH11) and α-L-arabinofuranosidase (GH43 and GH51)-cooperating with one ß-xylosidase (GH43) and one α-D-glucuronidase (GH67) into enzymatic hydrolysis were assessed to obtain the best yield of xylose. The xylose release was monitored over time in the first 90 min and after a prolonged reaction up to 48 h of reaction. The highest yield of xylose was 63.6% (48 h, 40 â, pH 5.5), using a mixture of all enzymes devoid of α-L-arabinofuranosidase (GH43) family. These results highlight the importance of GH51 arabinofuranosidase debranching enzyme to allow a higher cleavage of the xylan backbone of GAX from BSG and their synergy with 2 endo-1,4-ß-xylanase (GH10 and GH11), one ß-xylosidase (GH43) and the inclusion of one α-D-glucuronidase (GH67) in the reaction system. Therefore, this study provides an environmentally friendly process to produce xylose from BSG through utilization of enzymes as catalysts.
RESUMEN
Background and objective Healthcare-associated ventriculitis and meningitis (HAVM) is frequent in neurocritical patients and associated with significant mortality. Surgery and intracranial devices are usually necessary and may lead to infection. Classical clinical signs and cerebral spinal fluid (CSF) analysis may be unreliable. The purpose of this study was to characterize the prevalence of HAVM, risk factors, and interventions in the neurocritical population admitted in the ICU. Methods This was a retrospective single-center analysis of all adult neurocritical patients admitted to an ICU during a three-year period. Results A total of 218 neurocritical patients were included. The prevalence of HAVM was 13% and it was found to be associated with mortality. When suspected, it was not possible to exclude HAVM in 30% of the patients. HAVM was significantly associated with surgery, surgical reintervention, and brain devices. Sustained fever was the most frequent clinical sign, and it was significantly associated with unexcluded HAVM. CSF cell count was significantly higher in HAVM, though without microbiological isolation in most of the cases. Conclusion Brain damage, interventions, and devices may significantly alter cerebral homeostasis. Sustained fever is very frequent and may be attributed to several conditions. CSF cell count is useful for the diagnosis of HAVM. HAVM is a clinical challenge in the management of neurocritical patients with important therapeutic and prognostic implications.
RESUMEN
Single-dose coffee capsules have revolutionized the coffee market, fueling espresso coffee popularity and offering access to a wide selection of coffee blends. Nevertheless, scarce information related to coffee powder and brew's combined volatile characterization is available. In this study, it is hypothesized that coffee brew aroma characteristics can be predicted based on coffee powder's volatile composition. For this, headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection (GC × GC-ToFMS) was used. The data were combined via chemometric tools to characterize in depth the volatile composition of eight blends of capsule-coffee powder and respective espresso brews, simulating the consumer's perception. A total of 390 volatile compounds were putatively identified, 100 reported for the first time in roasted coffee or brews. Although the same chemical families were determined among the coffee powders and espresso brews, a different volatile profile was determined for each matrix. The Pearson correlation of coffee powders and respective brews allowed to identify 15 volatile compounds, mainly terpenic and esters recognized by their pleasant notes, with a strong relationship between the amounts present in both matrices. These compounds can be key markers to predict the volatile aroma potential of an espresso brew when analyzing the coffee powder.
RESUMEN
The authors present a case of purulent pericarditis probably secondary to respiratory infection, a rare entity in the antibiotic era. Pericardial fluid analysis identified streptococci and oral anaerobes as the causative agents. A prolonged and complicated diagnostic and therapeutic course, which included a long stay in the intensive care unit, is described, and a review of purulent pericarditis provided. Pericardial effusion, particularly in the setting of concomitant respiratory infection and immunocompromise or other risk factors, should raise the suspicion of bacterial pericarditis and prompt its timely diagnosis and treatment. Purulent pericarditis can be lethal and has potentially severe complications, so adequate antimicrobial therapy and source control are key. LEARNING POINTS: Purulent pericarditis is a rare infection, mostly resulting from contiguous or haematogenous spread, with diagnosis often delayed because signs and symptoms are unspecific.Treatment must include drainage of the pericardial space, combined with systemic antibiotics.Prognosis is variable, depending largely on the speed of diagnosis and treatment, as death is almost certain without adequate source control.
RESUMEN
Apple pomace valuation has been impaired by its high perishability and absence of fast drying approaches demanded by industry. This work aimed to assess the feasibility of Microwave Hydrodiffusion and Gravity (MHG) process applied for apple pomace drying using discrete delivery powers (300-900 W) and comparison with hot-air drying (40-100 °C). To dry 0.4 kg of apple pomace (81% moisture), hot-air drying required 3.6-9.9 h with estimated water evaporation flux of 1.0-3.5 mL/min. For MHG, which processed 1.2 kg, these corresponded to 1.0-2.6 h and 5.1-13.9 mL/min. Furthermore, MHG allowed water recovery containing part of apple pomace phenolic compounds and carbohydrates. The dried pomace was stable for 2 years, after which phenolic compounds and polysaccharides were still recoverable by hot water extractions. These results pave the way for MHG to be used for apple pomace and other by-products preservation, boosting their conversion into valuable co-product for valuation of its components.
Asunto(s)
Malus , Desecación , Microondas , Fenoles , Extractos VegetalesRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Salvia species are known to have anti-inflammatory properties, and are traditionally used for healing purposes. Salvia verbenaca is an Algerian plant used for healing wounds and ulcers. AIM OF THE STUDY: This work aims to assess the acute and subacute safety of S. verbenaca and its possible anti-inflammatory activity as a mechanism contributing to its traditional applications. MATERIALS AND METHODS: Lethal toxicity of S. verbenaca hydromethanolic extract was evaluated against Artemia salina larvae, while acute and subacute toxicity were orally tested on mice. The anti-inflammatory activity was screened ex vivo using membrane stabilization and in vivo using xylene induced ear edema as an acute inflammation model. The antiradical, reducing power and iron chelating activities of S. verbenaca were also investigated in vitro, and phenolic compounds were determined using UHPLC-DAD-ESI-MSn. RESULTS: Salvia verbenaca extract contained high amounts of phenolic compounds (206 µg GAE/mg extract). The in vitro antioxidant activity showed promising radical scavenging ability, iron chelating (IC50: 189 µg/mL), reducing power and strong anti-lipid-peroxidation effect (IC50: 111 µg/mL). The extract had potential cytotoxic effect against Artemia salina larvae (LC50: 30 µg/mL), but did not exhibit any acute/subacute toxicity effect on mice. Salvia verbenaca inhibited hypotonic and heat induced hemolysis and also reduced 50% of xylene induced ear edema at 600 mg/kg bw. Rosmarinic acid and caffeoylmalic acid were identified as the major compounds. CONCLUSION: Salvia verbenaca hydromethanolic extract was found to be safe at acute and subacute levels. Its in vitro/in vivo antioxidant activity, membrane stabilizing properties and anti-inflammatory activity may be an important aspect of its wound healing and anti-ulcer traditional use.
Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Fenoles/química , Fenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Salvia/química , Animales , Antiinflamatorios/toxicidad , Antioxidantes/toxicidad , Edema/inducido químicamente , Edema/tratamiento farmacológico , Riñón/efectos de los fármacos , Larva/efectos de los fármacos , Hígado/efectos de los fármacos , Ratones , Fenoles/análisis , Fenoles/toxicidad , Componentes Aéreos de las Plantas/química , Extractos Vegetales/análisis , Extractos Vegetales/toxicidad , Xilenos/toxicidadRESUMEN
Scarce information is available concerning the presence of carbohydrates in rainwater. The existence of carbohydrates in bulk deposition at the town of Estarreja (Portugal), at industrial (I) and background (BG) locals, in winter and spring seasons 2016, was assessed. Seventeen carbohydrates and related compounds were identified: monosaccharides (ribose, arabinose, xylose, glucose, galactose, fructose), disaccharides (sucrose, trehalose, maltose, cellobiose), polyols (arabinitol, xylitol, myo-inositol, mannitol, glucitol, maltitol), and the anhydromonosaccharide levoglucosan. Higher content of carbohydrates was observed in spring (BG: 670 nM; I: 249 nM) than in winter (BG: 168 nM; I: 195 nM), and fructose was the carbohydrate with the highest contribution in both seasons (spring: 32%/44% (I/BG); winter: 24% (at both sites)). Fructose, myo-inositol, glucose and sucrose showed higher volume-weighted averages (VWA) concentrations in spring than in winter, possibly due to biogenic emissions typical of spring, such as pollen, and fungal spores for myo-inositol. Fructose may have derived from isomerization of glucose in biomass burning, namely in winter. Levoglucosan and galactose presented higher VWA concentration in winter than in spring, suggesting a seasonal effect related with the biomass combustion. The carbohydrates VWA concentrations were similar for samples associated with maritime and terrestrial air masses, indicating that local sources were their main contributors. Source assessment of carbohydrates by factor analysis suggested: biogenic sources for the arabinitol, myo-inositol, glucose, fructose and sucrose; soil dust for the trehalose; and anthropogenic sources from biomass burning for the galactose, arabinose and levoglucosan. The bulk deposition showed to be fundamental on removing carbohydrates from the atmosphere.
Asunto(s)
Carbohidratos/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Atmósfera , Biomasa , Disacáridos , Polvo/análisis , Fructosa , Galactosa , Glucosa/análogos & derivados , Maltosa/análogos & derivados , Estaciones del Año , Sacarosa , Alcoholes del AzúcarRESUMEN
A strain with high exopolysaccharide (EPS) production was isolated from soil and identified as Bacillus mojavensis based on the 16S rRNA gene sequencing and biochemical properties. The EPS produced simultaneously with the growth phase reached a maximum of 22 g/L after attaining a stationary phase with sucrose used as sole carbon source. B. mojavensis EPS (BM-EPS) was recovered, fractionated by ethanol precipitation and analysed by NMR and methylation analyses. The BM-EPS was found to be composed of (ß2 â 6)-Fruf residues, characteristic of a levan, with an average molecular weight of 2.3 MDa. A homogeneous micro-porous and rough structure matrix was observed by SEM of the freeze-dried powdered sample. A concentration-dependent water-soluble nature was observed, with good water (5.3 g/g) and oil (36 g/g) holding capacities. The levan displayed good emulsification activity with excellent stability against food grade oil, thus favoring it as a promising emulsifying agent to food industries.
Asunto(s)
Bacillus/química , Emulsionantes/química , Emulsionantes/aislamiento & purificación , Fructanos/química , Fructanos/aislamiento & purificación , Peso Molecular , Solubilidad , Agua/químicaRESUMEN
Ellagitannins, condensed tannins, and pectic-derived polysaccharides were removed from natural cork stoppers using hydroalcoholic solution. Two main populations of migrated compounds were determined; the major one with molecular weight (MW) between 0.2 and 1 kDa and the second with 2.1 kDa and polydispersity of 1.3. Two residual populations mainly composed of condensed tannins were also observed between 2.5 and 4.5 kDa and higher than 15 kDa. Simple, C-glycosidic, complex, and oligomeric ellagitannins were identified by high-performance liquid chromatography-diode array detection/electrospray ionization-mass spectrometry (HPLC-DAD/ESI-MS). Ellagitannins linked to condensed tannins and some pectic-derived polysaccharides were also tentatively identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF-MS). This preliminary work opens an opportunity for the cork stoppers industry due to the relevance of this type of compounds on the astringency and bitterness of wines.