Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Diabetes Res Clin Pract ; 214: 111790, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39059739

RESUMEN

AIM: Among multi-ethnic Asians, type 2 diabetes (T2D) clustered in three subtypes; mild obesity-related diabetes (MOD), mild age-related diabetes with insulin insufficiency (MARD-II) and severe insulin-resistant diabetes with relative insulin insufficiency (SIRD-RII) had differential cardio-renal complication risk. We assessed the proteomic profiles to identify subtype specific biomarkers and its association with diabetes complications. METHODS: 1448 plasma proteins at baseline were measured and compared across the T2D subtypes. Multivariable cox regression was used to assess associations between significant proteomics features and cardio-renal complications. RESULTS: Among 645 T2D participants (SIRD-RII [19%], MOD [45%], MARD-II [36%]), 295 proteins expression differed significantly across the groups. These proteins were enriched in cell adhesion, neurogenesis and inflammatory response processes. In SIRD-RII group, ADH4, ACY1, THOP1, IGFBP2, NEFL, ENTPD2, CALB1, HAO1, CTSV, ITGAV, SCLY, EDA2R, ERBB2 proteins significantly associated with progressive CKD and LILRA5 protein with incident heart failure (HF). In MOD group, TAFA5, RSPO3, EDA2R proteins significantly associated with incident HF. In MARD-II group, FABP4 protein significantly associated with progressive CKD and PTPRN2 protein with major adverse cardiovascular events. Genetically determined NEFL and CALB1 were associated with kidney function decline. CONCLUSIONS: Each T2D subtype has unique proteomics signature and association with clinical outcomes and underlying mechanisms.


Asunto(s)
Pueblo Asiatico , Diabetes Mellitus Tipo 2 , Proteómica , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/sangre , Masculino , Femenino , Persona de Mediana Edad , Anciano , Biomarcadores/sangre , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/etiología
2.
J Clin Invest ; 134(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828728

RESUMEN

The macula densa (MD) is a distinct cluster of approximately 20 specialized kidney epithelial cells that constitute a key component of the juxtaglomerular apparatus. Unlike other renal tubular epithelial cell populations with functions relating to reclamation or secretion of electrolytes and solutes, the MD acts as a cell sensor, exerting homeostatic actions in response to sodium and chloride changes within the tubular fluid. Electrolyte flux through apical sodium transporters in MD cells triggers release of paracrine mediators, affecting blood pressure and glomerular hemodynamics. In this issue of the JCI, Gyarmati and authors explored a program of MD that resulted in activation of regeneration pathways. Notably, regeneration was triggered by feeding mice a low-salt diet. Furthermore, the MD cells showed neuron-like properties that may contribute to their regulation of glomerular structure and function. These findings suggest that dietary sodium restriction and/or targeting MD signaling might attenuate glomerular injury.


Asunto(s)
Regeneración , Animales , Regeneración/efectos de los fármacos , Ratones , Riñón/metabolismo , Humanos , Dieta Hiposódica , Aparato Yuxtaglomerular/metabolismo , Cloruro de Sodio Dietético , Transducción de Señal , Glomérulos Renales/metabolismo
3.
J Clin Invest ; 134(9)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483511

RESUMEN

In lung, thromboxane A2 (TXA2) activates the TP receptor to induce proinflammatory and bronchoconstrictor effects. Thus, TP receptor antagonists and TXA2 synthase inhibitors have been tested as potential asthma therapeutics in humans. Th9 cells play key roles in asthma and regulate the lung immune response to allergens. Herein, we found that TXA2 reduces Th9 cell differentiation during allergic lung inflammation. Th9 cells were decreased approximately 2-fold and airway hyperresponsiveness was attenuated in lungs of allergic mice treated with TXA2. Naive CD4+ T cell differentiation to Th9 cells and IL-9 production were inhibited dose-dependently by TXA2 in vitro. TP receptor-deficient mice had an approximately 2-fold increase in numbers of Th9 cells in lungs in vivo after OVA exposure compared with wild-type mice. Naive CD4+ T cells from TP-deficient mice exhibited increased Th9 cell differentiation and IL-9 production in vitro compared with CD4+ T cells from wild-type mice. TXA2 also suppressed Th2 and enhanced Treg differentiation both in vitro and in vivo. Thus, in contrast to its acute, proinflammatory effects, TXA2 also has longer-lasting immunosuppressive effects that attenuate the Th9 differentiation that drives asthma progression. These findings may explain the paradoxical failure of anti-thromboxane therapies in the treatment of asthma.


Asunto(s)
Asma , Diferenciación Celular , Linfocitos T Reguladores , Células Th2 , Tromboxano A2 , Animales , Ratones , Células Th2/inmunología , Células Th2/patología , Tromboxano A2/metabolismo , Tromboxano A2/inmunología , Linfocitos T Reguladores/inmunología , Asma/inmunología , Asma/patología , Asma/tratamiento farmacológico , Asma/genética , Ratones Noqueados , Interleucina-9/inmunología , Interleucina-9/genética , Interleucina-9/metabolismo , Neumonía/inmunología , Neumonía/patología , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Pulmón/inmunología , Pulmón/patología , Ovalbúmina/inmunología , Femenino , Linfocitos T Colaboradores-Inductores/inmunología
4.
Hypertension ; 81(4): 682-686, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38507510

RESUMEN

Renin was discovered more than a century ago. Since then, the functions of the renin-angiotensin system in the kidney have been the focus of intensive research revealing its importance in regulation of renal physiology and in the pathogenesis of heart, vascular, and kidney diseases. Inhibitors of renin-angiotensin system components are now foundational therapies for a range of kidney and cardiovascular diseases from hypertension to heart failure to diabetic nephropathy. Despite years of voluminous research, emerging studies continue to reveal new complexities of the regulation of the renin-angiotensin system within the kidney and identification of nonclassical components of the system like the prorenin receptor (PRR) and ACE2 (angiotensin-converting enzyme 2), with powerful renal effects that ultimately impact the broader cardiovascular system. With the emergence of a range of novel therapies for cardiovascular and kidney diseases, the importance of a detailed understanding of the renin-angiotensin system in the kidney will allow for the development of informed complementary approaches for combinations of treatments that will optimally promote health and longevity over the century ahead.


Asunto(s)
Nefropatías Diabéticas , Hipertensión , Humanos , Sistema Renina-Angiotensina , Promoción de la Salud , Riñón/metabolismo , Renina/metabolismo , Nefropatías Diabéticas/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38546133

RESUMEN

CONTEXT: Metabolites in tricarboxylic acid (TCA) pathway have pleiotropic functions. OBJECTIVE: To study the association between urine TCA cycle metabolites and the risk for chronic kidney disease (CKD) progression in individuals with type 2 diabetes. DESIGN, SETTING AND PARTICIPANTS: A prospective study in a discovery (n = 1826) and a validation (n = 1235) cohort of type 2 diabetes in a regional hospital and a primary care facility. EXPOSURE AND OUTCOME: Urine lactate, pyruvate, citrate, alpha-ketoglutarate, succinate, fumarate and malate were measured by mass spectrometry. CKD progression was defined as a composite of sustained eGFR below 15 ml/min/1.73 m2 , dialysis, renal death or doubling of serum creatinine. RESULTS: During a median of 9.2 (IQR 8.1-9.7) and 4.0 (3.2-5.1) years of follow-up, 213 and 107 renal events were identified. Cox regression suggested that urine lactate, fumarate and malate were associated with an increased risk (adjusted hazard ratio, aHR [95% CI] 1.63 [1.16-2.28], 1.82 [1.17-2.82] and 1.49 [1.05-2.11], per SD), while citrate was associated with a low risk (aHR 0.83 [0.72-0.96] per SD) for the renal outcome after adjustment for cardio-renal risk factors. These findings were reproducible in the validation cohort. Noteworthy, fumarate and citrate were independently associated with the renal outcome after additional adjustment for other metabolites. CONCLUSION: Urine fumarate and citrate predict the risk for progression to ESKD independent of clinical risk factors and other urine metabolites. These two metabolites in TCA cycle pathway may play important roles in the pathophysiological network underpinning progressive loss of kidney function in patients with type 2 diabetes.

6.
BMC Nephrol ; 25(1): 23, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233790

RESUMEN

BACKGROUND: We aimed to explore the three-way interaction among age, gender, and kidney function on the risk of all-cause mortality and cardiovascular mortality among patients with type 2 diabetes (T2D). METHODS: In a retrospective cohort study, patients aged > 40 years with T2D with serum creatinine and urine albumin measured from 2013 to 2019 were included from a multi-institutional diabetes registry. The exposure was estimated glomerular filtration rate (eGFR), outcomes were all-cause mortality (primary outcome) and cardiovascular disease (CVD) mortality (secondary outcome). We applied multivariable cox proportional hazards regression analysis to compute the association between eGFR and mortality. RESULTS: A total of 36,556 patients were followed for up to 6 years during which 2492 (6.82%) died from all causes, and 690 (1.9%) died from CVD. We observed a significant three-way interaction (p = 0.021) among age (younger, < 65; older, ≥65 years), gender and eGFR for the risk of all-cause mortality. Using age- and gender-specific eGFR of 90 ml/min/1.73m2 as the reference point, the adjusted hazard rate (HR) (95% CI) for all-cause mortality at eGFR of 40 ml/min/1.73m2 was 3.70 (2.29 to 5.99) in younger women and 1.86 (1.08 to 3.19) in younger men. The corresponding adjusted HRs in older women and older men were 2.38 (2.02 to 2.82) and 2.18 (1.85 to 2.57), respectively. Similar results were observed for CVD deaths, although the three-way interaction was not statistically significant. Sensitivity analysis yielded similar results. CONCLUSIONS: In this T2D population, younger women with reduced kidney function might be more susceptible to higher risks of all-cause mortality and CVD mortality than younger men.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Femenino , Anciano , Estudios de Cohortes , Estudios Retrospectivos , Singapur , Tasa de Filtración Glomerular , Riñón , Sistema de Registros , Factores de Riesgo
7.
Cell Rep Med ; 4(10): 101230, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37852174

RESUMEN

Current and future healthcare professionals are generally not trained to cope with the proliferation of artificial intelligence (AI) technology in healthcare. To design a curriculum that caters to variable baseline knowledge and skills, clinicians may be conceptualized as "consumers", "translators", or "developers". The changes required of medical education because of AI innovation are linked to those brought about by evidence-based medicine (EBM). We outline a core curriculum for AI education of future consumers, translators, and developers, emphasizing the links between AI and EBM, with suggestions for how teaching may be integrated into existing curricula. We consider the key barriers to implementation of AI in the medical curriculum: time, resources, variable interest, and knowledge retention. By improving AI literacy rates and fostering a translator- and developer-enriched workforce, innovation may be accelerated for the benefit of patients and practitioners.


Asunto(s)
Inteligencia Artificial , Educación Médica , Humanos , Curriculum , Medicina Basada en la Evidencia/educación
8.
Kidney Int ; 104(6): 1135-1149, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37843477

RESUMEN

Diabetic nephropathy (DN) is characterized by abnormal kidney energy metabolism, but its causes and contributions to DN pathogenesis are not clear. To examine this issue, we carried out targeted metabolomics profiling in a mouse model of DN that develops kidney disease resembling the human disorder. We found a distinct profile of increased lactate levels and impaired energy metabolism in kidneys of mice with DN, and treatment with an angiotensin-receptor blocker (ARB) reduced albuminuria, attenuated kidney pathology and corrected many metabolic abnormalities, restoring levels of lactate toward normal while increasing kidney ATP content. We also found enhanced expression of lactate dehydrogenase isoforms in DN. Expression of both the LdhA and LdhB isoforms were significantly increased in kidneys of mice, and treatment with ARB significantly reduced their expression. Single-cell sequencing studies showed specific up-regulation of LdhA in the proximal tubule, along with enhanced expression of oxidative stress pathways. There was a significant correlation between albuminuria and lactate in mice, and also in a Southeast Asian patient cohort consisting of individuals with type 2 diabetes and impaired kidney function. In the individuals with diabetes, this association was independent of ARB and angiotensin-converting enzyme inhibitor use. Furthermore, urinary lactate levels predicted the clinical outcomes of doubling of serum creatinine or development of kidney failure, and there was a significant correlation between urinary lactate levels and biomarkers of tubular injury and epithelial stress. Thus, we suggest that kidney metabolic disruptions leading to enhanced generation of lactate contribute to the pathogenesis of DN and increased urinary lactate levels may be a potential biomarker for risk of kidney disease progression.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Insuficiencia Renal , Humanos , Animales , Ratones , Nefropatías Diabéticas/etiología , Ácido Láctico , Albuminuria/etiología , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Riñón , Isoformas de Proteínas
9.
Hypertension ; 80(3): 668-677, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36628961

RESUMEN

BACKGROUND: Ang II (angiotensin II) type 1 (AT1) receptors play a critical role in cardiovascular diseases such as hypertension. Rodents have 2 types of AT1 receptor (AT1A and AT1B) of which knock-in Tagln-mediated smooth muscle AT1A silencing attenuated Ang II-induced hypertension. Although vascular remodeling, a significant contributor to organ damage, occurs concurrently with hypertension in Ang II-infused mice, the contribution of smooth muscle AT1A in this process remains unexplored. Accordingly, it is hypothesized that smooth muscle AT1A receptors exclusively contribute to both medial thickening and adventitial fibrosis regardless of the presence of hypertension. METHODS: About 1 µg/kg per minute Ang II was infused for 2 weeks in 2 distinct AT1A receptor silenced mice, knock-in Tagln-mediated constitutive smooth muscle AT1A receptor silenced mice, and Myh11-mediated inducible smooth muscle AT1A together with global AT1B silenced mice for evaluation of hypertensive cardiovascular remodeling. RESULTS: Medial thickness, adventitial collagen deposition, and immune cell infiltration in aorta were increased in control mice but not in both smooth muscle AT1A receptor silenced mice. Coronary arterial perivascular fibrosis in response to Ang II infusion was also attenuated in both AT1A receptor silenced mice. Ang II-induced cardiac hypertrophy was attenuated in constitutive smooth muscle AT1A receptor silenced mice. However, Ang II-induced cardiac hypertrophy and hypertension were not altered in inducible smooth muscle AT1A receptor silenced mice. CONCLUSIONS: Smooth muscle AT1A receptors mediate Ang II-induced vascular remodeling including medial hypertrophy and inflammatory perivascular fibrosis regardless of the presence of hypertension. Our data suggest an independent etiology of blood pressure elevation and hypertensive vascular remodeling in response to Ang II.


Asunto(s)
Hipertensión , Receptor de Angiotensina Tipo 1 , Ratones , Animales , Receptor de Angiotensina Tipo 1/genética , Angiotensina II/farmacología , Remodelación Vascular , Miocitos del Músculo Liso , Cardiomegalia , Fibrosis , Ratones Noqueados , Ratones Endogámicos C57BL
10.
Diabetes ; 72(7): 932-946, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36445944

RESUMEN

Diabetic corneal neuropathy (DCN) is a common complication of diabetes. However, there are very limited therapeutic options. We investigated the effects of a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, fenofibrate, on 30 patients (60 eyes) with type 2 diabetes. On in vivo confocal microscopy evaluation, there was significant stimulation of corneal nerve regeneration and a reduction in nerve edema after 30 days of oral fenofibrate treatment, as evidenced by significant improvement in corneal nerve fiber density (CNFD) and corneal nerve fiber width, respectively. Corneal epithelial cell morphology also significantly improved in cell circularity. Upon clinical examination, fenofibrate significantly improved patients' neuropathic ocular surface status by increasing tear breakup time along with a reduction of corneal and conjunctival punctate keratopathy. Tear substance P (SP) concentrations significantly increased after treatment, suggesting an amelioration of ocular surface neuroinflammation. The changes in tear SP concentrations was also significantly associated with improvement in CNFD. Quantitative proteomic analysis demonstrated that fenofibrate significantly upregulated and modulated the neurotrophin signaling pathway and linolenic acid, cholesterol, and fat metabolism. Complement cascades, neutrophil reactions, and platelet activation were also significantly suppressed. Our results showed that fenofibrate could potentially be a novel treatment for patients with DCN.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Fenofibrato , Humanos , PPAR alfa/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fenofibrato/farmacología , Fenofibrato/uso terapéutico , Proteómica , Córnea/inervación , Hipoglucemiantes , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/diagnóstico , Microscopía Confocal/métodos
11.
Nat Commun ; 13(1): 7497, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470928

RESUMEN

The kidney has large regenerative capacity, but this is compromised when kidney damage is excessive and renal tubular epithelial cells (TECs) undergo SNAI1-driven growth arrest. Here we investigate the role of IL11 in TECs, kidney injury and renal repair. IL11 stimulation of TECs induces ERK- and p90RSK-mediated GSK3ß inactivation, SNAI1 upregulation and pro-inflammatory gene expression. Mice with acute kidney injury upregulate IL11 in TECs leading to SNAI1 expression and kidney dysfunction, which is not seen in Il11 deleted mice or in mice administered a neutralizing IL11 antibody in either preemptive or treatment modes. In acute kidney injury, anti-TGFß reduces renal fibrosis but exacerbates inflammation and tubule damage whereas anti-IL11 reduces all pathologies. Mice with TEC-specific deletion of Il11ra1 have reduced pathogenic signaling and are protected from renal injury-induced inflammation, fibrosis, and failure. In a model of chronic kidney disease, anti-IL11 therapy promotes TEC proliferation and parenchymal regeneration, reverses fibroinflammation and restores renal mass and function. These data highlight IL11-induced mesenchymal transition of injured TECs as an important renal pathology and suggest IL11 as a therapeutic target for restoring stalled endogenous regeneration in the diseased kidney.


Asunto(s)
Lesión Renal Aguda , Anticuerpos Neutralizantes , Interleucina-11 , Túbulos Renales , Nefritis , Regeneración , Insuficiencia Renal Crónica , Animales , Ratones , Lesión Renal Aguda/terapia , Fibrosis , Subunidad alfa del Receptor de Interleucina-11/genética , Túbulos Renales/fisiología , Nefritis/terapia , Interleucina-11/antagonistas & inhibidores , Interleucina-11/fisiología , Eliminación de Gen , Anticuerpos Neutralizantes/uso terapéutico , Insuficiencia Renal Crónica/terapia , Modelos Animales de Enfermedad
12.
J Am Heart Assoc ; 11(19): e026581, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36172956

RESUMEN

Background A beneficial role for prostanoids in hypertension is suggested by clinical studies showing nonsteroidal anti-inflammatory drugs, which block the production of all prostanoids, cause sodium retention and exacerbate hypertension. Among prostanoids, prostaglandin E2 and its E-prostanoid receptor 4 receptor (EP4R) have been implicated in blood pressure control. Our previous study found that conditional deletion of EP4R from all tissues in adult mice exacerbates angiotensin II-dependent hypertension, suggesting a powerful effect of EP4R to resist blood pressure elevation. We also found that elimination of EP4R from vascular smooth muscle cells did not affect the severity of hypertension, suggesting nonvascular targets of prostaglandin E mediate this antihypertensive effect. Methods and Results Here we generated mice with cell-specific deletion of EP4R from macrophage-specific EP4 receptor knockouts or kidney epithelial cells (KEKO) to assess the contributions of EP4R in these cells to hypertension pathogenesis. Macrophage-specific EP4 receptor knockouts showed similar blood pressure responses to alterations in dietary sodium or chronic angiotensin II infusion as Controls. By contrast, angiotensin II-dependent hypertension was significantly augmented in KEKOs (mean arterial pressure: 146±3 mm Hg) compared with Controls (137±4 mm Hg; P=0.02), which was accompanied by impaired natriuresis in KEKOs. Because EP4R expression in the kidney is enriched in the collecting duct, we compared responses to amiloride in angiotensin II-infused KEKOs and Controls. Blockade of the epithelial sodium channel with amiloride caused exaggerated natriuresis in KEKOs compared with Controls (0.21±0.01 versus 0.15±0.02 mmol/24 hour per 20 g; P=0.015). Conclusions Our data suggest EP4R in kidney epithelia attenuates hypertension. This antihypertension effect of EP4R may be mediated by reducing the activity of the epithelial sodium channel, thereby promoting natriuresis.


Asunto(s)
Hipertensión , Subtipo EP4 de Receptores de Prostaglandina E , Amilorida/uso terapéutico , Angiotensina II/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Antihipertensivos/uso terapéutico , Dinoprostona/metabolismo , Células Epiteliales , Canales Epiteliales de Sodio/genética , Hipertensión/tratamiento farmacológico , Riñón , Macrófagos/metabolismo , Ratones , Prostaglandinas , Subtipo EP4 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo
13.
J Am Soc Nephrol ; 33(4): 718-730, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35140116

RESUMEN

BACKGROUND: Alport syndrome is a genetic disorder characterized by a defective glomerular basement membrane, tubulointerstitial fibrosis, inflammation, and progressive renal failure. IL-11 was recently implicated in fibrotic kidney disease, but its role in Alport syndrome is unknown. METHODS: We determined IL-11 expression by molecular analyses and in an Alport syndrome mouse model. We assessed the effects of a neutralizing IL-11 antibody (×203) versus an IgG control in Col4a3-/- mice (lacking the gene encoding a type IV collagen component) on renal tubule damage, function, fibrosis, and inflammation. Effects of ×203, the IgG control, an angiotensin-converting enzyme (ACE) inhibitor (ramipril), or ramipril+X203 on lifespan were also studied. RESULTS: In Col4a3-/- mice, as kidney failure advanced, renal IL-11 levels increased, and IL-11 expression localized to tubular epithelial cells. The IL-11 receptor (IL-11RA1) is expressed in tubular epithelial cells and podocytes and is upregulated in tubular epithelial cells of Col4a3-/- mice. Administration of ×203 reduced albuminuria, improved renal function, and preserved podocyte numbers and levels of key podocyte proteins that are reduced in Col4a3-/- mice; these effects were accompanied by reduced fibrosis and inflammation, attenuation of epithelial-to-mesenchymal transition, and increased expression of regenerative markers. X203 attenuated pathogenic ERK and STAT3 pathways, which were activated in Col4a3-/- mice. The median lifespan of Col4a3-/- mice was prolonged 22% by ramipril, 44% with ×203, and 99% with ramipril+X203. CONCLUSIONS: In an Alport syndrome mouse model, renal IL-11 is upregulated, and neutralization of IL-11 reduces epithelial-to-mesenchymal transition, fibrosis, and inflammation while improving renal function. Anti-IL-11 combined with ACE inhibition synergistically extends lifespan. This suggests that a therapeutic approach targeting IL-11 holds promise for progressive kidney disease in Alport syndrome.


Asunto(s)
Nefritis Hereditaria , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Interleucina-11/uso terapéutico , Riñón/patología , Longevidad , Ratones , Ratones Noqueados , Nefritis Hereditaria/tratamiento farmacológico , Nefritis Hereditaria/genética , Nefritis Hereditaria/metabolismo
14.
Kidney360 ; 3(12): 2086-2094, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36591353

RESUMEN

Background: ACE2 is a key enzyme in the renin-angiotensin system (RAS) capable of balancing the RAS by metabolizing angiotensin II (AngII). First described in cardiac tissue, abundance of ACE2 is highest in the kidney, and it is also expressed in several extrarenal tissues. Previously, we reported an association between enhanced susceptibility to hypertension and elevated renal AngII levels in global ACE2-knockout mice. Methods: To examine the effect of ACE2 expressed in the kidney, relative to extrarenal expression, on the development of hypertension, we used a kidney crosstransplantation strategy with ACE2-KO and WT mice. In this model, both native kidneys are removed and renal function is provided entirely by the transplanted kidney, such that four experimental groups with restricted ACE2 expression are generated: WT→WT (WT), KO→WT (KidneyKO), WT→KO (SystemicKO), and KO→KO (TotalKO). Additionally, we used nanoscale mass spectrometry-based proteomics to identify ACE2 fragments in early glomerular filtrate of mice. Results: Although significant differences in BP were not detected, a major finding of our study is that shed or soluble ACE2 (sACE2) was present in urine of KidneyKO mice that lack renal ACE2 expression. Detection of sACE2 in the urine of KidneyKO mice during AngII-mediated hypertension suggests that sACE2 originating from extrarenal tissues can reach the kidney and be excreted in urine. To confirm glomerular filtration of ACE2, we used micropuncture and nanoscale proteomics to detect peptides derived from ACE2 in the Bowman's space. Conclusions: Our findings suggest that both systemic and renal tissues may contribute to sACE2 in urine, identifying the kidney as a major site for ACE2 actions. Moreover, filtration of sACE2 into the lumen of the nephron may contribute to the pathophysiology of kidney diseases characterized by disruption of the glomerular filtration barrier.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Hipertensión , Riñón , Sistema Renina-Angiotensina , Animales , Ratones , Angiotensina II/metabolismo , Angiotensina II/farmacología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Riñón/metabolismo , Ratones Noqueados , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/farmacología , Sistema Renina-Angiotensina/genética , Sistema Renina-Angiotensina/fisiología
15.
Nat Genet ; 53(9): 1322-1333, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34385711

RESUMEN

The functional interpretation of genome-wide association studies (GWAS) is challenging due to the cell-type-dependent influences of genetic variants. Here, we generated comprehensive maps of expression quantitative trait loci (eQTLs) for 659 microdissected human kidney samples and identified cell-type-eQTLs by mapping interactions between cell type abundances and genotypes. By partitioning heritability using stratified linkage disequilibrium score regression to integrate GWAS with single-cell RNA sequencing and single-nucleus assay for transposase-accessible chromatin with high-throughput sequencing data, we prioritized proximal tubules for kidney function and endothelial cells and distal tubule segments for blood pressure pathogenesis. Bayesian colocalization analysis nominated more than 200 genes for kidney function and hypertension. Our study clarifies the mechanism of commonly used antihypertensive and renal-protective drugs and identifies drug repurposing opportunities for kidney disease.


Asunto(s)
Hipertensión/genética , Túbulos Renales Distales/patología , Túbulos Renales Proximales/patología , Sitios de Carácter Cuantitativo/genética , Insuficiencia Renal Crónica/genética , Secuencia de Bases , Mapeo Cromosómico , Células Endoteliales/patología , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Insuficiencia Renal Crónica/patología , Análisis de Secuencia de ARN , Análisis de la Célula Individual
16.
Am J Physiol Renal Physiol ; 320(6): F1080-F1092, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33969697

RESUMEN

A major pathway in hypertension pathogenesis involves direct activation of ANG II type 1 (AT1) receptors in the kidney, stimulating Na+ reabsorption. AT1 receptors in tubular epithelia control expression and stimulation of Na+ transporters and channels. Recently, we found reduced blood pressure and enhanced natriuresis in mice with cell-specific deletion of AT1 receptors in smooth muscle (SMKO mice). Although impaired vasoconstriction and preserved renal blood flow might contribute to exaggerated urinary Na+ excretion in SMKO mice, we considered whether alterations in Na+ transporter expression might also play a role; therefore, we carried out proteomic analysis of key Na+ transporters and associated proteins. Here, we show that levels of Na+-K+-2Cl- cotransporter isoform 2 (NKCC2) and Na+/H+ exchanger isoform 3 (NHE3) are reduced at baseline in SMKO mice, accompanied by attenuated natriuretic and diuretic responses to furosemide. During ANG II hypertension, we found widespread remodeling of transporter expression in wild-type mice with significant increases in the levels of total NaCl cotransporter, phosphorylated NaCl cotransporter (Ser71), and phosphorylated NKCC2, along with the cleaved, activated forms of the α- and γ-epithelial Na+ channel. However, the increases in α- and γ-epithelial Na+ channel with ANG II were substantially attenuated in SMKO mice. This was accompanied by a reduced natriuretic response to amiloride. Thus, enhanced urinary Na+ excretion observed after cell-specific deletion of AT1 receptors from smooth muscle cells is associated with altered Na+ transporter abundance across epithelia in multiple nephron segments. These findings suggest a system of vascular-epithelial in the kidney, modulating the expression of Na+ transporters and contributing to the regulation of pressure natriuresis.NEW & NOTEWORTHY The use of drugs to block the renin-angiotensin system to reduce blood pressure is common. However, the precise mechanism for how these medications control blood pressure is incompletely understood. Here, we show that mice lacking angiotensin receptors specifically in smooth muscle cells lead to alternation in tubular transporter amount and function. Thus, demonstrating the importance of vascular-tubular cross talk in the control of blood pressure.


Asunto(s)
Angiotensina II/farmacología , Células Epiteliales/metabolismo , Riñón/irrigación sanguínea , Miocitos del Músculo Liso/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Amilorida/farmacología , Animales , Bloqueadores del Canal de Sodio Epitelial/farmacología , Femenino , Furosemida/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes , Hipertensión/inducido químicamente , Proteínas Luminiscentes , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Receptor de Angiotensina Tipo 1/genética , Sodio/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Proteína Fluorescente Roja
17.
Circ Res ; 128(7): 847-863, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793328

RESUMEN

Dr Irvine Page proposed the Mosaic Theory of Hypertension in the 1940s advocating that hypertension is the result of many factors that interact to raise blood pressure and cause end-organ damage. Over the years, Dr Page modified his paradigm, and new concepts regarding oxidative stress, inflammation, genetics, sodium homeostasis, and the microbiome have arisen that allow further refinements of the Mosaic Theory. A constant feature of this approach to understanding hypertension is that the various nodes are interdependent and that these almost certainly vary between experimental models and between individuals with hypertension. This review discusses these new concepts and provides an introduction to other reviews in this compendium of Circulation Research.


Asunto(s)
Hipertensión/fisiopatología , Aldosterona/fisiología , Angiotensina II/farmacología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Vasos Sanguíneos/fisiología , Líquidos Corporales/fisiología , Sistema Nervioso Central/fisiología , Humanos , Hipertensión/etiología , Inflamación/complicaciones , Riñón/fisiología , Microbiota/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Riesgo , Cloruro de Sodio/administración & dosificación , Cloruro de Sodio/efectos adversos , Vasoconstrictores/farmacología
18.
Hypertension ; 77(2): 393-404, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33390039

RESUMEN

Activation of AT1 (type 1 Ang) receptors stimulates cardiomyocyte hypertrophy in vitro. Accordingly, it has been suggested that regression of cardiac hypertrophy associated with renin-Ang system blockade is due to inhibition of cellular actions of Ang II in the heart, above and beyond their effects to reduce pressure overload. We generated 2 distinct mouse lines with cell-specific deletion of AT1A receptors, from cardiomyocytes. In the first line (C-SMKO), elimination of AT1A receptors was achieved using a heterologous Cre recombinase transgene under control of the Sm22 promoter, which expresses in cells of smooth muscle lineage including cardiomyocytes and vascular smooth muscle cells of conduit but not resistance vessels. The second line (R-SMKO) utilized a Cre transgene knocked-in to the Sm22 locus, which drives expression in cardiac myocytes and vascular smooth muscle cells in both conduit and resistance arteries. Thus, although both groups lack AT1 receptors in the cardiomyocytes, they are distinguished by presence (C-SMKO) or absence (R-SMKO) of peripheral vascular responses to Ang II. Similar to wild-types, chronic Ang II infusion caused hypertension and cardiac hypertrophy in C-SMKO mice, whereas both hypertension and cardiac hypertrophy were reduced in R-SMKOs. Thus, despite the absence of AT1A receptors in cardiomyocytes, C-SMKOs develop robust cardiac hypertrophy. By contrast, R-SMKOs developed identical levels of hypertrophy in response to pressure overload-induced by transverse aortic banding. Our findings suggest that direct activation of AT1 receptors in cardiac myocytes has minimal influence on cardiac hypertrophy induced by renin-Ang system activation or pressure overload.


Asunto(s)
Angiotensina II/farmacología , Cardiomegalia/genética , Hipertensión/genética , Miocitos Cardíacos/metabolismo , Receptor de Angiotensina Tipo 1/genética , Sistema Renina-Angiotensina/efectos de los fármacos , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Resistencia Vascular/efectos de los fármacos
20.
Hypertension ; 73(6): e87-e120, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30866654

RESUMEN

Hypertension is the most common chronic disease in the world, yet the precise cause of elevated blood pressure often cannot be determined. Animal models have been useful for unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on their validity for representing human forms of hypertension, including responses to therapy, and on the quality of studies in those models (such as reproducibility and experimental design). Important unmet needs in this field include the development of models that mimic the discrete hypertensive syndromes that now populate the clinic, resolution of ongoing controversies in the pathogenesis of hypertension, and the development of new avenues for preventing and treating hypertension and its complications. Animal models may indeed be useful for addressing these unmet needs.


Asunto(s)
American Heart Association , Antihipertensivos/uso terapéutico , Investigación Biomédica , Presión Sanguínea/fisiología , Hipertensión/fisiopatología , Animales , Modelos Animales de Enfermedad , Hipertensión/tratamiento farmacológico , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA