Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Am Soc Nephrol ; 32(9): 2242-2254, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34112705

RESUMEN

BACKGROUND: Although coronavirus disease 2019 (COVID-19) causes significan t morbidity, mainly from pulmonary involvement, extrapulmonary symptoms are also major componen ts of the disease. Kidney disease, usually presenting as AKI, is particularly severe among patients with COVID-19. It is unknown, however, whether such injury results from direct kidney infection with COVID-19's causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or from indirect mechanisms. METHODS: Using ex vivo cell models, we sought to analyze SARS-CoV-2 interactions with kidney tubular cells and assess direct tubular injury. These models comprised primary human kidney epithelial cells (derived from nephrectomies) and grown as either proliferating monolayers or quiescent three-dimensional kidney spheroids. RESULTS: We demonstrated that viral entry molecules and high baseline levels of type 1 IFN-related molecules were present in monolayers and kidney spheroids. Although both models support viral infection and replication, they did not exhibit a cytopathic effect and cell death, outcomes that were strongly present in SARS-CoV-2-infected controls (African green monkey kidney clone E6 [Vero E6] cultures). A comparison of monolayer and spheroid cultures demonstrated higher infectivity and replication of SARS-CoV-2 in actively proliferating monolayers, although the spheroid cultures exhibited high er levels of ACE2. Monolayers exhibited elevation of some tubular injury molecules-including molecules related to fibrosis (COL1A1 and STAT6) and dedifferentiation (SNAI2)-and a loss of cell identity, evident by reduction in megalin (LRP2). The three-dimensional spheroids were less prone to such injury. CONCLUSIONS: SARS-CoV-2 can infect kidney cells without a cytopathic effect. AKI-induced cellular proliferation may potentially intensify infectivity and tubular damage by SARS-CoV-2, suggesting that early intervention in AKI is warranted to help minimize kidney infection.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/virología , COVID-19/complicaciones , SARS-CoV-2/patogenicidad , Esferoides Celulares/virología , Animales , Células Cultivadas , Chlorocebus aethiops , Estudios de Cohortes , Efecto Citopatogénico Viral , Células Epiteliales/patología , Células Epiteliales/virología , Interacciones Microbiota-Huesped , Humanos , Interferón Tipo I/metabolismo , Riñón/inmunología , Riñón/patología , Riñón/virología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Modelos Biológicos , Pandemias , Receptores Virales/metabolismo , Estudios Retrospectivos , SARS-CoV-2/fisiología , Esferoides Celulares/patología , Células Vero , Replicación Viral
3.
Sci Rep ; 10(1): 22097, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328501

RESUMEN

In-vivo single cell clonal analysis in the adult mouse kidney has previously shown lineage-restricted clonal proliferation within varying nephron segments as a mechanism responsible for cell replacement and local regeneration. To analyze ex-vivo clonal growth, we now preformed limiting dilution to generate genuine clonal cultures from one single human renal epithelial cell, which can give rise to up to 3.4 * 106 cells, and analyzed their characteristics using transcriptomics. A comparison between clonal cultures revealed restriction to either proximal or distal kidney sub-lineages with distinct cellular and molecular characteristics; rapidly amplifying de-differentiated clones and a stably proliferating cuboidal epithelial-appearing clones, respectively. Furthermore, each showed distinct molecular features including cell-cycle, epithelial-mesenchymal transition, oxidative phosphorylation, BMP signaling pathway and cell surface markers. In addition, analysis of clonal versus bulk cultures show early clones to be more quiescent, with elevated expression of renal developmental genes and overall reduction in renal identity markers, but with an overlapping expression of nephron segment identifiers and multiple identity. Thus, ex-vivo clonal growth mimics the in-vivo situation displaying lineage-restricted precursor characteristics of mature renal cells. These data suggest that for reconstruction of varying renal lineages with human adult kidney based organoid technology and kidney regeneration ex-vivo, use of multiple heterogeneous precursors is warranted.


Asunto(s)
Evolución Clonal/genética , Riñón/crecimiento & desarrollo , Mesodermo/crecimiento & desarrollo , Regeneración/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Biología Computacional , Células Epiteliales/citología , Transición Epitelial-Mesenquimal/genética , Humanos , Riñón/citología , Mesodermo/metabolismo , Nefronas/crecimiento & desarrollo , Nefronas/metabolismo , Cultivo Primario de Células , Análisis de la Célula Individual , Células Madre/citología
4.
J Am Soc Nephrol ; 31(12): 2757-2772, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32753400

RESUMEN

BACKGROUND: Cell-based therapies aimed at replenishing renal parenchyma have been proposed as an approach for treating CKD. However, pathogenic mechanisms involved in CKD such as renal hypoxia result in loss of kidney function and limit engraftment and therapeutic effects of renal epithelial progenitors. Jointly administering vessel-forming cells (human mesenchymal stromal cells [MSCs] and endothelial colony-forming cells [ECFCs]) may potentially result in in vivo formation of vascular networks. METHODS: We administered renal tubule-forming cells derived from human adult and fetal kidneys (previously shown to exert a functional effect in CKD mice) into mice, alongside MSCs and ECFCs. We then assessed whether this would result in generation of "renovascular units" comprising both vessels and tubules with potential interaction. RESULTS: Directly injecting vessel-forming cells and renal tubule-forming cells into the subcutaneous and subrenal capsular space resulted in self-organization of donor-derived vascular networks that connected to host vasculature, alongside renal tubules comprising tubular epithelia of different nephron segments. Vessels derived from MSCs and ECFCs augmented in vivo tubulogenesis by the renal tubule-forming cells. In vitro coculture experiments showed that MSCs and ECFCs induced self-renewal and genes associated with mesenchymal-epithelial transition in renal tubule-forming cells, indicating paracrine effects. Notably, after renal injury, renal tubule-forming cells and vessel-forming cells infused into the renal artery did not penetrate the renal vascular network to generate vessels; only administering them into the kidney parenchyma resulted in similar generation of human renovascular units in vivo. CONCLUSIONS: Combined cell therapy of vessel-forming cells and renal tubule-forming cells aimed at alleviating renal hypoxia and enhancing tubulogenesis holds promise as the basis for new renal regenerative therapies.


Asunto(s)
Células Endoteliales/citología , Glomérulos Renales/citología , Túbulos Renales/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Técnicas de Cocultivo , Humanos , Ratones , Neovascularización Fisiológica
5.
Cell Rep ; 30(3): 852-869.e4, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31968258

RESUMEN

End-stage renal disease is a worldwide epidemic requiring renal replacement therapy. Harvesting tissue from failing kidneys and autotransplantation of tissue progenitors could theoretically delay the need for dialysis. Here we use healthy and end-stage human adult kidneys to robustly expand proliferative kidney epithelial cells and establish 3D kidney epithelial cultures termed "nephrospheres." Formation of nephrospheres reestablishes renal identity and function in primary cultures. Transplantation into NOD/SCID mice shows that nephrospheres restore self-organogenetic properties lost in monolayer cultures, allowing long-term engraftment as tubular structures, potentially adding nephron segments and demonstrating self-organization as critical to survival. Furthermore, long-term tubular engraftment of nephrospheres is functionally beneficial in murine models of chronic kidney disease. Remarkably, nephrospheres inhibit pro-fibrotic collagen production in cultured fibroblasts via paracrine modulation, while transplanted nephrospheres induce transcriptional signatures of proliferation and release from quiescence, suggesting re-activation of endogenous repair. These data support the use of human nephrospheres for renal cell therapy.


Asunto(s)
Riñón/lesiones , Riñón/patología , Esferoides Celulares/patología , Cicatrización de Heridas , Animales , Diferenciación Celular , Proliferación Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Células Epiteliales/patología , Fibrosis , Humanos , Riñón/fisiopatología , Ratones Endogámicos NOD , Ratones SCID , Insuficiencia Renal Crónica/patología , Esferoides Celulares/trasplante
6.
PLoS Genet ; 15(7): e1008248, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31260446

RESUMEN

The localization of mRNAs encoding secreted/membrane proteins (mSMPs) to the endoplasmic reticulum (ER) likely facilitates the co-translational translocation of secreted proteins. However, studies have shown that mSMP recruitment to the ER in eukaryotes can occur in a manner that is independent of the ribosome, translational control, and the signal recognition particle, although the mechanism remains largely unknown. Here, we identify a cis-acting RNA sequence motif that enhances mSMP localization to the ER and appears to increase mRNA stability, and both the synthesis and secretion of secretome proteins. Termed SECReTE, for secretion-enhancing cis regulatory targeting element, this motif is enriched in mRNAs encoding secretome proteins translated on the ER in eukaryotes and on the inner membrane of prokaryotes. SECReTE consists of ≥10 nucleotide triplet repeats enriched with pyrimidine (C/U) every third base (i.e. NNY, where N = any nucleotide, Y = pyrimidine) and can be present in the untranslated as well as the coding regions of the mRNA. Synonymous mutations that elevate the SECReTE count in a given mRNA (e.g. SUC2, HSP150, and CCW12) lead to an increase in protein secretion in yeast, while a reduction in count led to less secretion and physiological defects. Moreover, the addition of SECReTE to the 3'UTR of an mRNA for an exogenously expressed protein (e.g. GFP) led to its increased secretion from yeast cells. Thus, SECReTE constitutes a novel RNA motif that facilitates ER-localized mRNA translation and protein secretion.


Asunto(s)
Proteínas Fúngicas/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Regiones no Traducidas 3' , Retículo Endoplásmico/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Motivos de Nucleótidos , Biosíntesis de Proteínas , Estabilidad del ARN , Transporte de ARN , ARN de Hongos/química , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Mutación Silenciosa
7.
Biochim Biophys Acta ; 1863(5): 911-21, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26367800

RESUMEN

Peroxisomes are distinct membrane-enclosed organelles involved in the ß-oxidation of fatty acids and synthesis of ether phospholipids (e.g. plasmalogens), as well as cholesterol and its derivatives (e.g. bile acids). Peroxisomes comprise a distinct and highly segregated subset of cellular proteins, including those of the peroxisome membrane and the interior matrix, and while the mechanisms of protein import into peroxisomes have been extensively studied, they are not fully understood. Here we will examine the potential role of RNA trafficking and localized translation on protein import into peroxisomes and its role in peroxisome biogenesis and function. Given that RNAs encoding peroxisome biogenesis (PEX) and matrix proteins have been found in association with the endoplasmic reticulum and peroxisomes, it suggests that localized translation may play a significant role in the import pathways of these different peroxisomal constituents.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Biogénesis de Organelos , Peroxisomas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Transporte Biológico , Retículo Endoplásmico/química , Células Eucariotas/química , Células Eucariotas/metabolismo , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Peroxisomas/química , Plantas/química , Plantas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Señales de Clasificación de Proteína , ARN Mensajero/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
8.
Proc Natl Acad Sci U S A ; 110(27): 10970-5, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23776224

RESUMEN

Telomerase is a ribonucleoprotein complex that extends the 3' ends of linear chromosomes. The specialized telomerase reverse transcriptase requires a multidomain RNA (telomerase RNA, TER), which includes an integral RNA template and functionally important template-adjacent pseudoknot. The structure of the human TER pseudoknot revealed that the loops interact with the stems to form a triple helix shown to be important for activity in vitro. A similar triple helix has been predicted to form in diverse fungi TER pseudoknots. The solution NMR structure of the Kluyveromyces lactis pseudoknot, presented here, reveals that it contains a long pyrimidine motif triple helix with unexpected features that include three individual bulge nucleotides and a C(+)•G-C triple adjacent to a stem 2-loop 2 junction. Despite significant differences in sequence and base triples, the 3D shape of the human and K. lactis TER pseudoknots are remarkably similar. Analysis of the effects of nucleotide substitutions on cell growth and telomere lengths provides evidence that this conserved structure forms in endogenously assembled telomerase and is essential for telomerase function in vivo.


Asunto(s)
Kluyveromyces/enzimología , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN/química , Telomerasa/química , Secuencia de Bases , Humanos , Kluyveromyces/genética , Modelos Moleculares , Mutagénesis , Resonancia Magnética Nuclear Biomolecular , Pirimidinas/química , ARN/genética , Estabilidad del ARN , ARN Bacteriano/genética , ARN de Hongos/química , ARN de Hongos/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Telomerasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA