RESUMEN
Gangliosides, sialic acid bearing glycosphingolipids, are components of the outer leaflet of plasma membranes of all vertebrate cells. They contribute to cell regulation by interacting with proteins in their own membranes (cis) or their extracellular milieu (trans). As amphipathic membrane constituents, gangliosides present challenges for identifying their ganglioside protein interactome. To meet these challenges, we synthesized bifunctional clickable photoaffinity gangliosides, delivered them to plasma membranes of cultured cells, then captured and identified their interactomes using proteomic mass spectrometry. Installing probes on ganglioside lipid and glycan moieties, we captured cis and trans ganglioside-protein interactions. Ganglioside interactomes varied with the ganglioside structure, cell type, and site of the probe (lipid or glycan). Gene ontology revealed that gangliosides engage with transmembrane transporters and cell adhesion proteins including integrins, cadherins, and laminins. The approach developed is applicable to other gangliosides and cell types, promising to provide insights into molecular and cellular regulation by gangliosides.
Asunto(s)
Química Clic , Gangliósidos , Gangliósidos/química , Gangliósidos/metabolismo , Humanos , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/síntesis química , Sondas Moleculares/química , Sondas Moleculares/síntesis química , Membrana Celular/metabolismo , Membrana Celular/químicaRESUMEN
There is a growing interest in low dose radiation (LDR) to counteract neurodegeneration. However, LDR effects on normal brain have not been completely explored yet. Recent analyses showed that LDR exposure to normal brain tissue causes expression level changes of different proteins including neurodegeneration-associated proteins. We assessed the proteomic changes occurring in radiated vs. sham normal swine brains. Due to its involvement in various neurodegenerative processes, including those associated with cognitive changes after high dose radiation exposure, we focused on the hippocampus first. We observed significant proteomic changes in the hippocampus of radiated vs. sham swine after LDR (1.79Gy). Mass spectrometry results showed 190 up-regulated and 120 down-regulated proteins after LDR. Western blotting analyses confirmed increased levels of TPM1, TPM4, PCP4 and NPY (all proteins decreased in various neurodegenerative processes, with NPY and PCP4 known to be neuroprotective) in radiated vs. sham swine. These data support the use of LDR as a potential beneficial tool to interfere with neurodegenerative processes and perhaps other brain-related disorders, including behavioral disorders.
Asunto(s)
Encefalopatías , Exposición a la Radiación , Porcinos , Animales , Proteómica , Irradiación Corporal Total , Mamíferos , HipocampoRESUMEN
NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.
Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Canal de Sodio Activado por Voltaje NAV1.5 , Ubiquitina-Proteína Ligasas Nedd4 , Ubiquitinación , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina/metabolismo , Humanos , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Células HEK293RESUMEN
Diacylglycerol kinases (DGKs) are lipid kinases that mediate the phosphorylation of diacylglycerol (DAG) leading to the production of phosphatidic acid (PtdOH). To examine the role of phosphorylation on DGK-θ, we first identified the phosphorylated sites on endogenous DGK-θ from mouse brain and found four sites: S15, S17, which we refer to phosphomotif-1 sites, and S22 and S26 which we refer to as phosphomotif-2 sites. This study focused on the role of these phosphorylated sites on enzyme activity, membrane binding, thermal stability, and cellular half-life of DGK-θ. After generating a construct devoid of all non-catalytic phosphorylation sites (4A), we also generated other constructs to mimic phosphorylation of these residues by mutating them to glutamate (E). Our data demonstrate that an increase in membrane affinity requires the phosphorylation of all four endogenous sites as the phosphomimetic 4E but not other phosphomimietics. Furthermore, 4E also shows an increase in basal activity as well as an increase in the Syt1-induced activity compared to 4A. It is noteworthy that these phosphorylations had no effect on the thermal stability or cellular half-life of this enzyme. Interestingly, when only one phosphorylation domain (phosphomotif-1 or phosphomotif-2) contained phosphomimetics (S15E/S17E or S22E/S26E), the basal activity was also increased but membrane binding affinity was not increased. Furthermore, when only one residue in each domain mimicked an endogenous phosphorylated serine (S15E/S22E or S17E/S26E), the Syt1-induced activity as well as membrane binding affinity decreased relative to 4A. These results indicate that these endogenous phosphorylation sites contribute differentially to membrane binding and enzymatic activity.
Asunto(s)
Diacilglicerol Quinasa , Diglicéridos , Animales , Ratones , Fosforilación , Diglicéridos/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismoRESUMEN
Repeated blast-traumatic brain injury (blast-TBI) has been hypothesized to cause persistent and unusual neurological and psychiatric symptoms in service members returning from war zones. Blast-wave primary effects have been supposed to induce damage and molecular alterations in the brain. However, the mechanisms through which the primary effect of an explosive-driven blast wave generate brain lesions and induce brain consequences are incompletely known. Prior findings from rat brains exposed to two consecutive explosive-driven blasts showed molecular changes (hyperphosphorylated-Tau, AQP4, S100ß, PDGF, and DNA-polymerase-ß) that varied in magnitude and direction across different brain regions. We aimed to compare, in an unbiased manner, the proteomic profile in the hippocampus of double blast vs sham rats using mass spectrometry (MS). Data showed differences in up- and down-regulation for protein abundances in the hippocampus of double blast vs sham rats. Tandem mass tag (TMT)-MS results showed 136 up-regulated and 94 down-regulated proteins between the two groups (10.25345/C52B8VP0X). These TMT-MS findings revealed changes never described before in blast studies, such as increases in MAGI3, a scaffolding protein at cell-cell junctions, which were confirmed by Western blotting analyses. Due to the absence of behavioral and obvious histopathological changes as described in our previous publications, these proteomic data further support the existence of an asymptomatic blast-induced molecular altered status (ABIMAS) associated with specific protein changes in the hippocampus of rats repeatedly expsosed to blast waves generated by explosive-driven detonations.
Asunto(s)
Traumatismos por Explosión , Lesiones Traumáticas del Encéfalo , Sustancias Explosivas , Ratas , Animales , Traumatismos por Explosión/complicaciones , Traumatismos por Explosión/patología , Proteómica , Lesiones Traumáticas del Encéfalo/patología , Hipocampo/patología , Modelos Animales de EnfermedadRESUMEN
BACKGROUND AND AIMS: Why only half of the idiopathic peripheral neuropathy (IPN) patients develop neuropathic pain remains unknown. By conducting a proteomics analysis on IPN patients, we aimed to discover proteins and new pathways that are associated with neuropathic pain. METHODS: We conducted unbiased mass-spectrometry proteomics analysis on blood plasma from 31 IPN patients with severe neuropathic pain and 29 IPN patients with no pain, to investigate protein biomarkers and protein-protein interactions associated with neuropathic pain. Univariate modeling was done with linear mixed modeling (LMM) and corrected for multiple testing. Multivariate modeling was performed using elastic net analysis and validated with internal cross-validation and bootstrapping. RESULTS: In the univariate analysis, 73 proteins showed a p-value <.05 and 12 proteins showed a p-value <.01. None were significant after Benjamini-Hochberg adjustment for multiple testing. Elastic net analysis created a model containing 12 proteins with reasonable discriminatory power to differentiate between painful and painless IPN (false-negative rate 0.10, false-positive rate 0.18, and an area under the curve 0.75). Eight of these 12 proteins were clustered into one interaction network, significantly enriched for the complement and coagulation pathway (Benjamini-Hochberg adjusted p-value = .0057), with complement component 3 (C3) as the central node. Bootstrap validation identified insulin-like growth factor-binding protein 2 (IGFBP2), complement factor H-related protein 4 (CFHR4), and ferritin light chain (FTL), as the most discriminatory proteins of the original 12 identified. INTERPRETATION: This proteomics analysis suggests a role for the complement system in neuropathic pain in IPN.
Asunto(s)
Neuralgia , Proteómica , Humanos , Neuralgia/etiología , Proteínas , PlasmaRESUMEN
NaV1.7, the neuronal voltage-gated sodium channel isoform, plays an important role in the human body's ability to feel pain. Mutations within NaV1.7 have been linked to pain-related syndromes, such as insensitivity to pain. To date, the regulation and internalization mechanisms of the NaV1.7 channel are not well known at a biochemical level. In this study, we perform biochemical and biophysical analyses that establish that the HECT-type E3 ligase, NEDD4L, ubiquitinates the cytoplasmic C-terminal (CT) region of NaV1.7. Through in vitro ubiquitination and mass spectrometry experiments, we identify, for the first time, the lysine residues of NaV1.7 within the CT region that get ubiquitinated. Furthermore, binding studies with an NEDD4L E3 ligase modulator (ubiquitin variant) highlight the dynamic partnership between NEDD4L and NaV1.7. These investigations provide a framework for understanding how NEDD4L-dependent regulation of the channel can influence the NaV1.7 function.
RESUMEN
Clinical frailty affects â¼10% of people over age 65 and is studied in a chronically inflamed (Interleukin-10 knockout; "IL10-KO") mouse model. Frailty phenotypes overlap the spectrum of diseases ("laminopathies") caused by mutations in LMNA. LMNA encodes nuclear intermediate filament proteins lamin A and lamin C ("lamin A/C"), important for tissue-specific signaling, metabolism and chromatin regulation. We hypothesized that wildtype lamin A/C associations with tissue-specific partners are perturbed by chronic inflammation, potentially contributing to dysfunction in frailty. To test this idea we immunoprecipitated native lamin A/C and associated proteins from skeletal muscle, hearts and brains of old (21-22 months) IL10-KO versus control C57Bl/6 female mice, and labeled with Tandem Mass Tags for identification and quantitation by mass spectrometry. We identified 502 candidate lamin-binding proteins from skeletal muscle, and 340 from heart, including 62 proteins identified in both tissues. Candidates included frailty phenotype-relevant proteins Perm1 and Fam210a, and nuclear membrane protein Tmem38a, required for muscle-specific genome organization. These and most other candidates were unaffected by IL10-KO, but still important as potential lamin A/C-binding proteins in native heart or muscle. A subset of candidates (21 in skeletal muscle, 30 in heart) showed significantly different lamin A/C-association in an IL10-KO tissue (p < 0.05), including AldoA and Gins3 affected in heart, and Lmcd1 and Fabp4 affected in skeletal muscle. To screen for binding, eleven candidates plus prelamin A and emerin controls were arrayed as synthetic 20-mer peptides (7-residue stagger) and incubated with recombinant purified lamin A "tail" residues 385-646 under relatively stringent conditions. We detected strong lamin A binding to peptides solvent exposed in Lmcd1, AldoA, Perm1, and Tmem38a, and plausible binding to Csrp3 (muscle LIM protein). These results validated both proteomes as sources for native lamin A/C-binding proteins in heart and muscle, identified four candidate genes for Emery-Dreifuss muscular dystrophy (CSRP3, LMCD1, ALDOA, and PERM1), support a lamin A-interactive molecular role for Tmem38A, and supported the hypothesis that lamin A/C interactions with at least two partners (AldoA in heart, transcription factor Lmcd1 in muscle) are altered in the IL10-KO model of frailty.
RESUMEN
α-lipoic acid (LA) is an essential cofactor for mitochondrial dehydrogenases and is required for cell growth, metabolic fuel production, and antioxidant defense. In vitro, LA binds copper (Cu) with high affinity and as an endogenous membrane permeable metabolite could be advantageous in mitigating the consequences of Cu overload in human diseases. We tested this hypothesis in 3T3-L1 preadipocytes with inactivated Cu transporter Atp7a; these cells accumulate Cu and show morphologic changes and mitochondria impairment. Treatment with LA corrected the morphology of Atp7a-/- cells similar to the Cu chelator bathocuproinedisulfonate (BCS) and improved mitochondria function; however, the mechanisms of LA and BCS action were different. Unlike BCS, LA did not decrease intracellular Cu but instead increased selenium levels that were low in Atp7a-/- cells. Proteome analysis confirmed distinct cell responses to these compounds and identified upregulation of selenoproteins as the major effect of LA on preadipocytes. Upregulation of selenoproteins was associated with an improved GSH:GSSG ratio in cellular compartments, which was lowered by elevated Cu, and reversal of protein oxidation. Thus, LA diminishes toxic effects of elevated Cu by improving cellular redox environment. We also show that selenium levels are decreased in tissues of a Wilson disease animal model, especially in the liver, making LA an attractive candidate for supplemental treatment of this disease.
Asunto(s)
Selenio , Ácido Tióctico , Animales , Humanos , Ácido Tióctico/farmacología , Cobre , Selenio/farmacología , Oxidación-Reducción , Selenoproteínas/genéticaRESUMEN
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the HD gene, coding for huntingtin protein (HTT). Mechanisms of HD cellular pathogenesis remain undefined and likely involve disruptions in many cellular processes and functions presumably mediated by abnormal protein interactions of mutant HTT. We previously found HTT interaction with several protein arginine methyl-transferase (PRMT) enzymes. Protein arginine methylation mediated by PRMT enzymes is an important post-translational modification with an emerging role in neurodegeneration. We found that normal (but not mutant) HTT can facilitate the activity of PRMTs in vitro and the formation of arginine methylation complexes. These interactions appear to be disrupted in HD neurons. This suggests an additional functional role for HTT/PRMT interactions, not limited to substrate/enzyme relationship, which may result in global changes in arginine protein methylation in HD. Our quantitative analysis of striatal precursor neuron proteome indicated that arginine protein methylation is significantly altered in HD. We identified a cluster highly enriched in RNA-binding proteins with reduced arginine methylation, which is essential to their function in RNA processing and splicing. We found that several of these proteins interact with HTT, and their RNA-binding and localization are affected in HD cells likely due to a compromised arginine methylation and/or abnormal interactions with mutant HTT. These studies reveal a potential new mechanism for disruption of RNA processing in HD, involving a direct interaction of HTT with methyl-transferase enzymes and modulation of their activity and highlighting methylation of arginine as potential new therapeutic target for HD.
RESUMEN
Thousands of mammalian intracellular proteins are dynamically modified by O-linked ß-N-acetylglucosamine (O-GlcNAc). Global changes in O-GlcNAcylation have been associated with the development of cardiomyopathy, heart failure, hypertension, and neurodegenerative disease. Levels of O-GlcNAc in cells and tissues can be detected using numerous approaches; however, immunoblotting using GlcNAc-specific antibodies and lectins is commonplace. The goal of this study was to optimize the detection of O-GlcNAc in heart lysates by immunoblotting. Using a combination of tissue fractionation, immunoblotting, and galactosyltransferase labeling, as well as hearts from wild-type and O-GlcNAc transferase transgenic mice, we demonstrate that contractile proteins in the heart are differentially detected by two commercially available antibodies (CTD110.6 and RL2). As CTD110.6 displays poor reactivity toward contractile proteins, and as these proteins represent a major fraction of the heart proteome, a better assessment of cardiac O-GlcNAcylation is obtained in total tissue lysates with RL2. The data presented highlight tissue lysis approaches that should aid the assessment of the cardiac O-GlcNAcylation by immunoblotting.
Asunto(s)
Enfermedades Neurodegenerativas , Ratones , Animales , Anticuerpos/metabolismo , Proteoma/metabolismo , Corazón , Proteínas Contráctiles/metabolismo , Acetilglucosamina , Procesamiento Proteico-Postraduccional , Mamíferos/metabolismoRESUMEN
Dendritic cells bridge the innate and adaptive immune responses by serving as sensors of infection and as the primary APCs responsible for the initiation of the T cell response against invading pathogens. The naive T cell activation requires the following three key signals to be delivered from dendritic cells: engagement of the TCR by peptide Ags bound to MHC molecules (signal 1), engagement of costimulatory molecules on both cell types (signal 2), and expression of polarizing cytokines (signal 3). Initial interactions between Borrelia burgdorferi, the causative agent of Lyme disease, and dendritic cells remain largely unexplored. To address this gap in knowledge, we cultured live B. burgdorferi with monocyte-derived dendritic cells (mo-DCs) from healthy donors to examine the bacterial immunopeptidome associated with HLA-DR. In parallel, we examined changes in the expression of key costimulatory and regulatory molecules as well as profiled the cytokines released by dendritic cells when exposed to live spirochetes. RNA-sequencing studies on B. burgdorferi-pulsed dendritic cells show a unique gene expression signature associated with B. burgdorferi stimulation that differs from stimulation with lipoteichoic acid, a TLR2 agonist. These studies revealed that exposure of mo-DCs to live B. burgdorferi drives the expression of both pro- and anti-inflammatory cytokines as well as immunoregulatory molecules (e.g., PD-L1, IDO1, Tim3). Collectively, these studies indicate that the interaction of live B. burgdorferi with mo-DCs promotes a unique mature DC phenotype that likely impacts the nature of the adaptive T cell response generated in human Lyme disease.
Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Células Dendríticas , Linfocitos T/metabolismo , Citocinas/metabolismoRESUMEN
Distinct CD4+ T cell epitopes have been associated with spontaneous control of HIV-1 replication, but analysis of antigen-dependent factors that influence epitope selection is lacking. To examine these factors, we used a cell-free antigen processing system that incorporates soluble HLA-DR (DR1), HLA-DM (DM), cathepsins, and full-length protein antigens for epitope identification by LC-MS/MS. HIV-1 Gag, Pol, Env, Vif, Tat, Rev, and Nef were examined using this system. We identified 35 novel epitopes, including glycopeptides. Epitopes from smaller HIV-1 proteins mapped to regions of low protein stability and higher solvent accessibility. HIV-1 antigens associated with limited CD4+ T cell responses were processed efficiently, while some protective epitopes were inefficiently processed. 55% of epitopes obtained from cell-free processing induced memory CD4+ T cell responses in HIV-1+ donors, including eight of 19 novel epitopes tested. Thus, an in vitro processing system utilizing the components of Class II processing reveals factors influencing epitope selection of HIV-1 and represents an approach to understanding epitope selection from non-HIV-1 antigens.
Asunto(s)
Infecciones por VIH , Vacunas , Humanos , Presentación de Antígeno , Cromatografía Liquida , Espectrometría de Masas en Tándem , Epítopos de Linfocito T , Antígenos ViralesRESUMEN
Assessing personal exposure to environmental toxicants is a critical challenge for predicting disease risk. Previously, using human serum albumin (HSA)-based biomonitoring, we reported dosimetric relationships between adducts at HSA Cys34 and ambient air pollutant levels (Smith et al., Chem. Res. Toxicol. 2021, 34, 1183). These results provided the foundation to explore modifications at other sites in HSA to reveal novel adducts of complex exposures. Thus, the Pan-Protein Adductomics (PPA) technology reported here is the next step toward an unbiased, comprehensive characterization of the HSA adductome. The PPA workflow requires <2 µL serum/plasma and uses nanoflow-liquid chromatography, gas-phase fractionation, and overlapping-window data-independent acquisition high-resolution tandem mass spectrometry. PPA analysis of albumin from nonsmoking women exposed to high levels of air pollution uncovered 68 unique location-specific modifications (LSMs) across 21 HSA residues. While nearly half were located at Cys34 (33 LSMs), 35 were detected on other residues, including Lys, His, Tyr, Ser, Met, and Arg. HSA adduct relative abundances spanned a â¼400â¯000-fold range and included putative products of exogenous (SO2, benzene, phycoerythrobilin) and endogenous (oxidation, lipid peroxidation, glycation, carbamylation) origin, as well as 24 modifications without annotations. PPA quantification revealed statistically significant changes in LSM levels across the 84 days of monitoring (â¼3 HSA lifetimes) in the following putative adducts: Cys34 trioxidation, ß-methylthiolation, benzaldehyde, and benzene diol epoxide; Met329 oxidation; Arg145 dioxidation; and unannotated Cys34 and His146 adducts. Notably, the PPA workflow can be extended to any protein. Pan-Protein Adductomics is a novel and powerful strategy for untargeted global exploration of protein modifications.
Asunto(s)
Contaminación del Aire , Albúmina Sérica Humana , Humanos , Femenino , Albúmina Sérica Humana/química , Benceno , Proteínas , Espectrometría de Masas en TándemRESUMEN
Copper (Cu) has a multifaceted role in brain development, function, and metabolism. Two homologous Cu transporters, Atp7a (Menkes disease protein) and Atp7b (Wilson disease protein), maintain Cu homeostasis in the tissue. Atp7a mediates Cu entry into the brain and activates Cu-dependent enzymes, whereas the role of Atp7b is less clear. We show that during postnatal development Atp7b is necessary for normal morphology and function of choroid plexus (ChPl). Inactivation of Atp7b causes reorganization of ChPl' cytoskeleton and cell-cell contacts, loss of Slc31a1 from the apical membrane, and a decrease in the length and number of microvilli and cilia. In ChPl lacking Atp7b, Atp7a is upregulated but remains intracellular, which limits Cu transport into the brain and results in significant Cu deficit, which is reversed only in older animals. Cu deficiency is associated with down-regulation of Atp7a in locus coeruleus and catecholamine imbalance, despite normal expression of dopamine-ß-hydroxylase. In addition, there are notable changes in the brain lipidome, which can be attributed to inhibition of diacylglyceride-to-phosphatidylethanolamine conversion. These results identify the new role for Atp7b in developing brain and identify metabolic changes that could be exacerbated by Cu chelation therapy.
Asunto(s)
Cobre , Síndrome del Pelo Ensortijado , Ratones , Animales , ATPasas Transportadoras de Cobre , Cobre/metabolismo , Plexo Coroideo/metabolismo , Síndrome del Pelo Ensortijado/metabolismo , Encéfalo/metabolismoRESUMEN
Epigenetic modifications to histone proteins serve an important role in regulating permissive and repressive chromatin states, but despite the identification of many histone PTMs and their perceived role, the epigenetic writers responsible for generating these chromatin signatures are not fully characterized. Here, we report that the canonical histone H3K9 methyltransferases EHMT1/GLP and EHMT2/G9a are capable of catalyzing methylation of histone H3 lysine 23 (H3K23). Our data show that while both enzymes can mono- and di-methylate H3K23, only EHMT1/GLP can tri-methylate H3K23. We also show that pharmacologic inhibition or genetic ablation of EHMT1/GLP and/or EHMT2/G9a leads to decreased H3K23 methylation in mammalian cells. Taken together, this work identifies H3K23 as a new direct methylation target of EHMT1/GLP and EHMT2/G9a, and highlights the differential activity of these enzymes on H3K23 as a substrate.
Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Animales , Metilación , Histonas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Histona Metiltransferasas/genética , Cromatina , Mamíferos/genéticaRESUMEN
Previously, we reported that heterologous expression of an embryonic transcription factor, Tbx18, reprograms ventricular cardiomyocytes into induced pacemaker cells (Tbx18-iPMs), though the key pathways are unknown. Here, we have used a tandem mass tag proteomic approach to characterize the impact of Tbx18 on neonatal rat ventricular myocytes. Tbx18 expression triggered vast proteome remodeling. Tbx18-iPMs exhibited increased expression of known pacemaker ion channels, including Hcn4 and Cx45 as well as upregulation of the mechanosensitive ion channels Piezo1, Trpp2 (PKD2), and TrpM7. Metabolic pathways were broadly downregulated, as were ion channels associated with ventricular excitation-contraction coupling. Tbx18-iPMs also exhibited extensive intracellular cytoskeletal and extracellular matrix remodeling, including 96 differentially expressed proteins associated with the epithelial-to-mesenchymal transition (EMT). RNAseq extended coverage of low abundance transcription factors, revealing upregulation of EMT-inducing Snai1, Snai2, Twist1, Twist2, and Zeb2. Finally, network diffusion mapping of >200 transcriptional regulators indicates EMT and heart development factors occupy adjacent network neighborhoods downstream of Tbx18 but upstream of metabolic control factors. In conclusion, transdifferentiation of cardiac myocytes into pacemaker cells entails massive electrogenic, metabolic, and cytostructural remodeling. Structural changes exhibit hallmarks of the EMT. The results aid ongoing efforts to maximize the yield and phenotypic stability of engineered biological pacemakers.
Asunto(s)
Transdiferenciación Celular , Transición Epitelial-Mesenquimal , Miocitos Cardíacos , Proteínas de Dominio T Box , Animales , Transición Epitelial-Mesenquimal/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Miocitos Cardíacos/metabolismo , Proteoma/metabolismo , Proteómica , Ratas , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Canales Catiónicos TRPM/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Manipulation of glycosylation patterns, i.e., glycoengineering, is incorporated in the therapeutic antibody development workflow to ensure clinical safety, and this approach has also been used to modulate the biological activities, functions, or pharmacological properties of antibody drugs. Whereas most existing glycoengineering strategies focus on the canonical glycans found in the constant domain of immunoglobulin G (IgG) antibodies, we report a new strategy to leverage the untapped potential of atypical glycosylation patterns in the variable domains, which naturally occur in 15% to 25% of IgG antibodies. Glycosylation sites were added to the antigen-binding regions of two functionally divergent, interleukin-2-binding monoclonal antibodies. We used computational tools to rationally install various N-glycosylation consensus sequences into the antibody variable domains, creating "glycovariants" of these molecules. Strikingly, almost all the glycovariants were successfully glycosylated at their newly installed N-glycan sites, without reduction of the antibody's native function. Importantly, certain glycovariants exhibited modified activities compared to the parent antibody, showing the potential of our glycoengineering strategy to modulate biological function of antibodies involved in multi-component receptor systems. Finally, when coupled with a high-flux sialic acid precursor, a glycovariant with two installed glycosylation sites demonstrated superior in vivo half-life. Collectively, these findings validate a versatile glycoengineering strategy that introduces atypical glycosylation into therapeutic antibodies in order to improve their efficacy and, in certain instances, modulate their activity early in the drug development process.
Asunto(s)
Anticuerpos Monoclonales , Inmunoglobulina G , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/uso terapéutico , Glicosilación , Inmunoglobulina G/química , Polisacáridos/químicaRESUMEN
Lipids and their metabolic enzymes are a critical point of regulation for the membrane curvature required to induce membrane fusion during synaptic vesicle recycling. One such enzyme is diacylglycerol kinase θ (DGKθ), which produces phosphatidic acid (PtdOH) that generates negative membrane curvature. Synapses lacking DGKθ have significantly slower rates of endocytosis, implicating DGKθ as an endocytic regulator. Importantly, DGKθ kinase activity is required for this function. However, protein regulators of DGKθ's kinase activity in neurons have never been identified. In this study, we employed APEX2 proximity labeling and mass spectrometry to identify endogenous interactors of DGKθ in neurons and assayed their ability to modulate its kinase activity. Seven endogenous DGKθ interactors were identified and notably, synaptotagmin-1 (Syt1) increased DGKθ kinase activity 10-fold. This study is the first to validate endogenous DGKθ interactors at the mammalian synapse and suggests a coordinated role between DGKθ-produced PtdOH and Syt1 in synaptic vesicle recycling.
RESUMEN
Ubiquitin (Ub)-mediated regulation of plasmalemmal ion channel activity canonically occurs via stimulation of endocytosis. Whether ubiquitination can modulate channel activity by alternative mechanisms remains unknown. Here, we show that the transient receptor potential vanilloid 4 (TRPV4) cation channel is multiubiquitinated within its cytosolic N-terminal and C-terminal intrinsically disordered regions (IDRs). Mutagenizing select lysine residues to block ubiquitination of the N-terminal but not C-terminal IDR resulted in a marked elevation of TRPV4-mediated intracellular calcium influx, without increasing cell surface expression levels. Conversely, enhancing TRPV4 ubiquitination via expression of an E3 Ub ligase reduced TRPV4 channel activity but did not decrease plasma membrane abundance. These results demonstrate Ub-dependent regulation of TRPV4 channel function independent of effects on plasma membrane localization. Consistent with ubiquitination playing a key negative modulatory role of the channel, gain-of-function neuropathy-causing mutations in the TRPV4 gene led to reduced channel ubiquitination in both cellular and Drosophila models of TRPV4 neuropathy, whereas increasing mutant TRPV4 ubiquitination partially suppressed channel overactivity. Together, these data reveal a novel mechanism via which ubiquitination of an intracellular flexible IDR domain modulates ion channel function independently of endocytic trafficking and identify a contributory role for this pathway in the dysregulation of TRPV4 channel activity by neuropathy-causing mutations.