Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biology (Basel) ; 13(2)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38392334

RESUMEN

Nowadays, the infraorder Delphinida (oceanic dolphins and kin) represents the most diverse extant clade of Cetacea, with delphinids alone accounting for more than 40% of the total number of living cetacean species. As for other cetacean groups, the Early Miocene represents a key interval for the evolutionary history of Delphinida, as it was during this time span that the delphinidans became broadly distributed worldwide, first and foremost with the widespread genus Kentriodon and closely related forms. Here, we report on a new odontocete find from Burdigalian (20.4-19.0 Ma) deposits of the Friulian-Venetian Basin of northeastern Italy, consisting of the partial cranium of a small delphinidan with associated ear bones (right periotic, stapes, malleus and tympanic bulla). Osteoanatomical considerations and comparisons allow us to assign the studied specimen to the genus Kentriodon. This is the first confirmed record of Kentriodon from Europe as well as from the whole proto-Mediterranean region. Stratigraphic and phylogenetic considerations suggest that our new specimen may represent the geologically oldest member of Kentriodon. The evolutionary success of Kentriodon may correlate with the emergence of narrow-band high-frequency echolocation as a possible strategy to escape acoustic detection by large marine predators such as the squalodontids. In addition, the relatively high encephalization quotient of Kentriodon spp. may have provided these early dolphins with some kind of competitive advantage over the coeval non-delphinidan odontocetes.

2.
Life (Basel) ; 13(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895466

RESUMEN

The white shark, Carcharodon carcharias, is the main top predator of the present-day Mediterranean Sea. The deep past of C. carcharias in the Mediterranean is witnessed by a rather conspicuous, mostly Pliocene fossil record. Here, we provide a synthesis of the palaeobiology and palaeoecology of the Mediterranean white sharks. Phenetically modern white shark teeth first appeared around the Miocene-Pliocene transition in the Pacific, and soon after in the Mediterranean. Molecular phylogenetic analyses support an origin of the Mediterranean white shark population from the dispersal of Australian/Pacific palaeopopulations, which may have occurred through the Central American Seaway. Tooth dimensions suggest that the Mediterranean white sharks could have grown up to about 7 m total length during the Pliocene. A richer-than-today marine mammal fauna was likely pivotal in supporting the Mediterranean white sharks through the Pliocene and most of the Quaternary. White sharks have seemingly become more common as other macropredators declined and disappeared, notwithstanding the concurrent demise of many potential prey items in the context of the latest Pliocene and Quaternary climatic and environmental perturbations of the Mediterranean region. The overall generalist trophic habits of C. carcharias were likely crucial for securing ecological success in the highly variable Mediterranean scenario by allowing the transition to a mostly piscivorous diet as the regional marine mammal fauna shrank.

3.
Nature ; 620(7975): 824-829, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532931

RESUMEN

The fossil record of cetaceans documents how terrestrial animals acquired extreme adaptations and transitioned to a fully aquatic lifestyle1,2. In whales, this is associated with a substantial increase in maximum body size. Although an elongate body was acquired early in cetacean evolution3, the maximum body mass of baleen whales reflects a recent diversification that culminated in the blue whale4. More generally, hitherto known gigantism among aquatic tetrapods evolved within pelagic, active swimmers. Here we describe Perucetus colossus-a basilosaurid whale from the middle Eocene epoch of Peru. It displays, to our knowledge, the highest degree of bone mass increase known to date, an adaptation associated with shallow diving5. The estimated skeletal mass of P. colossus exceeds that of any known mammal or aquatic vertebrate. We show that the bone structure specializations of aquatic mammals are reflected in the scaling of skeletal fraction (skeletal mass versus whole-body mass) across the entire disparity of amniotes. We use the skeletal fraction to estimate the body mass of P. colossus, which proves to be a contender for the title of heaviest animal on record. Cetacean peak body mass had already been reached around 30 million years before previously assumed, in a coastal context in which primary productivity was particularly high.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Peso Corporal , Fósiles , Ballenas , Animales , Aclimatación , Perú , Ballenas/anatomía & histología , Ballenas/clasificación , Ballenas/fisiología , Tamaño Corporal , Esqueleto , Buceo
4.
Life (Basel) ; 13(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36836683

RESUMEN

Chitons (Polyplacophora) include some of the most conspicuous bioeroders of the present-day shallow seas. Abundant palaeontological evidence for the feeding activity of ancient chitons is preserved in the form of radular traces that are usually found on invertebrate shells and hardgrounds. We report on widespread grazing traces occurring on partial skeletons of the extinct sirenian Metaxytherium subapenninum from the Lower Pliocene (Zanclean) of Arcille (Grosseto Province, Tuscany, Italy). These distinctive ichnofossils are described under the ichnotaxonomic name Osteocallis leonardii isp. nov. and interpreted as reflecting substrate scraping by polyplacophorans. A scrutiny of palaeontological literature reveals that similar traces occur on fossil vertebrates as old as the Upper Cretaceous, suggesting that bone has served as a substrate for chiton feeding for more than 66 million years. Whether these bone modifications reflect algal grazing, carrion scavenging or bone consumption remains unsure, but the first hypothesis appears to be the most parsimonious, as well as the most likely in light of the available actualistic data. As the role of bioerosion in controlling fossilization can hardly be overestimated, further research investigating how grazing organisms contribute to the biostratinomic processes affecting bone promises to disclose new information on how some marine vertebrates manage to become fossils.

5.
Proc Biol Sci ; 289(1977): 20220774, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35765834

RESUMEN

Shark-cetacean trophic interactions, preserved as bite marks in the fossil record, mostly correspond to isolated or fragmentary findings that bear limited information about major trophic patterns or roles. Here, we provide evidence of focalized foraging by sharks in the form of tooth bite marks over physeteroids fossil bones from the late Miocene of Peru. These findings indicate that sharks were targeting the forehead of coeval physeteroids to actively feed on their lipid-rich nasal complexes. Miocene physeteroids displayed a broad diversity, including giant predatorial forms, small benthic foragers and suction feeders. Like their extant relatives, these animals exhibited enlarged fatty forehead organs responsible for their sound production capabilities, thus evolving taxon-specific cranial architecture. Bite marks are found on the cranial bones where these structures were attached, indicating that sharks actively targeted this region; but also, in areas that would only be accessible following the consumption of the surrounding soft tissues. The shape of the bite marks and their distribution suggests a series of consecutive scavenging events by individuals of different shark species. Similar bite patterns can be recognized on other Miocene physeteroids fossils from across the globe, suggesting that sharks actively exploited physeteroid carcasses as fat sources.


Asunto(s)
Tiburones , Cachalote , Animales , Fósiles , Perú , Cráneo
6.
Curr Biol ; 32(8): 1843-1851.e2, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35259339

RESUMEN

The killer whale (Orcinus orca) and false killer whale (Pseudorca crassidens) are the only extant cetaceans that hunt other marine mammals, with pods of the former routinely preying on baleen whales >10 m in length and the latter being known to take other delphinids.1-3 Fossil evidence for the origins of this feeding behavior is wanting, although molecular phylogenies indicate that it evolved independently in the two lineages.4 We describe a new extinct representative of the killer whale ecomorph, Rododelphis stamatiadisi, based on a partial skeleton from the Pleistocene of Rhodes (Greece). Five otoliths of the bathypelagic blue whiting Micromesistius poutassou are associated with the holotype, providing unexpected evidence of its last meal. The evolutionary relationships of R. stamatiadisi and the convergent evolution of killer whale-like features were explored through a broad-ranging phylogenetic analysis that recovered R. stamatiadisi as the closest relative of P. crassidens and O. orca as the only living representative of a once diverse clade. Within the clade of Orca and kin, key features implicated in extant killer whale feeding, such as body size, tooth size, and tooth count, evolved in a stepwise manner. The tooth wear in Rododelphis and an extinct species of Orcinus (O. citoniensis) are consistent with a fish-based diet, supporting an exaptative Pleistocene origin for marine mammal hunting in both lineages. If correct, predation by the ancestors of Pseudorca and Orca did not play a significant role in the evolution of baleen whale gigantism. VIDEO ABSTRACT.


Asunto(s)
Orca , Animales , Conducta Alimentaria , Filogenia , Conducta Predatoria , Ballenas
7.
Integr Zool ; 17(1): 24-43, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34002457

RESUMEN

The fossil history of turtle and whale barnacles (Coronuloidea: Chelonibiidae, Platylepadidae, Coronulidae and †Emersoniidae) is fragmentary and has only been investigated in part. Morphological inferences and molecular phylogenetic analyses on extant specimens suggest that the roots of whale barnacles (Coronulidae) are to be found among the chelonibiid turtle barnacles, but the hard-part modifications that enabled early coronuloids to attach to the cetacean skin are still largely to be perceived. Here, we reappraise a fossil chelonibiid specimen from the Miocene of insular Tanzania that was previously referred to the living species Chelonibia caretta. This largely forgotten specimen is here described as the holotype of the new species †Chelonibia zanzibarensis. While similar to C. caretta, †C. zanzibarensis exhibits obvious external longitudinal parietal canals occurring in-between external longitudinal parietal septa that abut outwards to form T-shaped flanges, a character so far regarded as proper of the seemingly more derived Coronulidae and Platylepadidae. Along with these features, the presence of a substrate imprint on the shell exterior indicates that †C. zanzibarensis grasped its host's integument in much the same way as coronulids and platylepadids, albeit without the development of macroscopic parietal buttresses and bolsters. Thin section analyses of the inner parietal architecture of some extant and extinct coronuloids conclusively demonstrate that vestiges of comparable external parietal microstructures are present in some living members of Chelonibiidae. This observation strengthens the unity of Coronuloidea while significantly contributing to our understanding of the evolution of the coronuloid shell structure in adapting to a diverse spectrum of hosts.


Asunto(s)
Exoesqueleto , Evolución Biológica , Fósiles , Thoracica , Tortugas , Animales , Filogenia , Tanzanía
8.
PLoS One ; 16(7): e0254395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264979

RESUMEN

The Miocene Pisco Formation, broadly exposed in the Ica Desert of southern Peru, is among the most outstanding Cenozoic marine Fossil-Lagerstätten worldwide. It is renowned for its exceptional preservation and abundance of vertebrate fossils, including a rich assemblage of whales and dolphins (Cetacea). Here, we integrate taphonomic data on 890 marine vertebrate fossils, gathered through 16 different localities. Our observations range from the taxonomic distribution, articulation, completeness, disposition and orientation of skeletons, to the presence of bite marks, associations with shark teeth and macro-invertebrates, bone and soft tissue preservation, and the formation of attendant carbonate concretions and sedimentary structures. We propose that the exceptional preservation characterising many Pisco vertebrates, as well as their exceptionally high abundance, cannot be ascribed to a single cause like high sedimentation rates (as proposed in the past), but rather to the interplay of several favourable factors including: (i) low levels of dissolved oxygen at the seafloor (with the intervention of seasonal anoxic events); (ii) the early onset of mineralisation processes like apatite dissolution/recrystallisation and carbonate mineral precipitation; (iii) rapid burial of carcasses in a soupy substrate and/or a novel mechanism involving scour-induced self-burial; and (iv) original biological richness. Collectively, our observations provide a comprehensive overview of the taphonomic processes that shaped one of South America's most important fossil deposits, and suggest a model for the formation of other marine vertebrate Fossil-Lagerstätten.


Asunto(s)
Fósiles , Animales , Invertebrados , Paleontología , Perú
10.
Biol Lett ; 15(5): 20190175, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31039728

RESUMEN

Baleen whales (Mysticeti) are major ecosystem engineers, thanks to their enormous size and bulk filter feeding strategy. Their signature gigantism is thought to be a relatively recent phenomenon, resulting from a Plio-Pleistocene mode shift in their body size evolution. Here, we report the largest whale fossil ever described: an Early Pleistocene (1.5-1.25 Ma) blue whale from Italy with an estimated body length of up to 26 m. Macroevolutionary modelling taking into account this specimen, as well as additional material from the Miocene of Peru, reveals that the proposed mode shift occurred either somewhat earlier, or perhaps not at all. Large-sized mysticetes comparable to most extant species have existed since at least the Late Miocene, suggesting a long-term impact on global marine ecosystems.


Asunto(s)
Ecosistema , Gigantismo , Animales , Tamaño Corporal , Fósiles , Humanos , Italia
11.
Curr Biol ; 27(19): R1058-R1059, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-29017038

RESUMEN

The pygmy right whale, Caperea marginata, is the most enigmatic living whale. Little is known about its ecology and behaviour, but unusual specialisations of visual pigments [1], mitochondrial tRNAs [2], and postcranial anatomy [3] suggest a lifestyle different from that of other extant whales. Geographically, Caperea represents the only major baleen whale lineage entirely restricted to the Southern Ocean. Caperea-like fossils, the oldest of which date to the Late Miocene, are exceedingly rare and likewise limited to the Southern Hemisphere [4], despite a more substantial history of fossil sampling north of the equator. Two new Pleistocene fossils now provide unexpected evidence of a brief and relatively recent period in geological history when Caperea occurred in the Northern Hemisphere (Figure 1A,B).


Asunto(s)
Distribución Animal , Fósiles/anatomía & histología , Ballenas/fisiología , Animales , Japón , Sicilia , Ballenas/anatomía & histología , Ballenas/clasificación
12.
J Anat ; 231(2): 212-220, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28542839

RESUMEN

Baleen is a comb-like structure that enables mysticete whales to bulk feed on vast quantities of small prey, and ultimately allowed them to become the largest animals on Earth. Because baleen rarely fossilises, extremely little is known about its evolution, structure and function outside the living families. Here we describe, for the first time, the exceptionally preserved baleen apparatus of an entirely extinct mysticete morphotype: the Late Miocene cetotheriid, Piscobalaena nana, from the Pisco Formation of Peru. The baleen plates of P. nana are closely spaced and built around relatively dense, fine tubules, as in the enigmatic pygmy right whale, Caperea marginata. Phosphatisation of the intertubular horn, but not the tubules themselves, suggests in vivo intertubular calcification. The size of the rack matches the distribution of nutrient foramina on the palate, and implies the presence of an unusually large subrostral gap. Overall, the baleen morphology of Piscobalaena likely reflects the interacting effects of size, function and phylogeny, and reveals a previously unknown degree of complexity in modern mysticete feeding evolution.


Asunto(s)
Ballenas/anatomía & histología , Animales , Fósiles
13.
Zootaxa ; 4237(2): zootaxa.4237.2.12, 2017 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-28264299

RESUMEN

The late Middle Pleistocene cave site of Pinnacle Point 13B (PP13B, South Africa) has provided the archaeologically oldest evidences yet known of human consumption of marine resources. Among the marine invertebrates recognised at PP13B, an isolated whale barnacle compartment was tentatively determined as Coronula diadema and regarded as indirect evidence of human consumption of a baleen whale (likely Megaptera novaeangliae). In this paper we redetermine this coronulid specimen as Cetopirus complanatus. This record significantly extends the fossil history of C. complanatus back by about 150 ky, thus partially bridging the occurrence of Cetopirus fragilis in the early Pleistocene to the latest Quaternary record of C. complanatus. Since C. complanatus is currently known as a highly specific phoront of right whales (Eubalaena spp.), we propose that the late Middle Pleistocene human groups that inhabited PP13B fed on a stranded southern right whale. Therefore, the whale barnacle from PP13B suggests the persistence of a southern right whale population off South Africa during the predominantly glacial MIS 6, thus evoking the continuity of cetacean migrations and antitropical distribution during that global cold phase. Interestingly, the most ancient evidence of humans feeding on a whale involves Eubalaena, historically the most exploited cetacean genus, and currently still seriously threatened with extinction due to human impact.


Asunto(s)
Thoracica , Animales , Arqueología , Bahías , Fósiles , Humanos , Sudáfrica
14.
Zootaxa ; 4154(3): 331-8, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27615844

RESUMEN

An isolated compartment of a whale barnacle is herein described from Recent beach deposits in Zoutelande (Walcheren, The Netherlands). This specimen is identified as belonging to the extant coronulid species Cryptolepas rhachianecti, currently known as an epizoic symbiont of the grey whale Eschrichtius robustus. This find represents the first occurrence of C. rhachianecti outside the North Pacific, and the first one as a (sub)fossil. In view of the fact that E. robustus, which is currently confined to the North Pacific, is known as a subfossil from the northeastern Atlantic between late Late Pleistocene (c. 45,000 years ago) and historical (c. 1700 AD) times, we propose a similar (late Quaternary) age for the isolated compartment. The find indicates that the extinct late Quaternary northeastern Atlantic population of E. robustus was infected by Cryptolepas rhachianecti. Our find is, therefore, compatible with the hypothesis of an ancient grey whale migration route running between the subtropical/temperate waters of the northeast Atlantic (or Mediterranean Basin), and the cold waters of the Baltic Sea (or southern Arctic Ocean), through the southern North Sea. Finally, we discuss the systematic placement of the fossil barnacle species Cryptolepas murata and propose the possibility of its removal from the genus Cryptolepas pending further investigations.


Asunto(s)
Thoracica/clasificación , Ballenas/parasitología , Estructuras Animales/anatomía & histología , Estructuras Animales/crecimiento & desarrollo , Animales , Tamaño Corporal , Ecosistema , Países Bajos , Tamaño de los Órganos , Simbiosis , Thoracica/anatomía & histología , Thoracica/crecimiento & desarrollo , Thoracica/fisiología , Ballenas/fisiología
15.
Naturwissenschaften ; 102(11-12): 70, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26553062

RESUMEN

Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.


Asunto(s)
Peces/anatomía & histología , Fósiles , Contenido Digestivo , Ballenas , Animales , Huesos/diagnóstico por imagen , Peces/clasificación , Perú , Conducta Predatoria , Microtomografía por Rayos X
16.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26354940

RESUMEN

Although modern beaked whales (Ziphiidae) are known to be highly specialized toothed whales that predominantly feed at great depths upon benthic and benthopelagic prey, only limited palaeontological data document this major ecological shift. We report on a ziphiid-fish assemblage from the Late Miocene of Peru that we interpret as the first direct evidence of a predator-prey relationship between a ziphiid and epipelagic fish. Preserved in a dolomite concretion, a skeleton of the stem ziphiid Messapicetus gregarius was discovered together with numerous skeletons of a clupeiform fish closely related to the epipelagic extant Pacific sardine (Sardinops sagax). Based on the position of fish individuals along the head and chest regions of the ziphiid, the lack of digestion marks on fish remains and the homogeneous size of individuals, we propose that this assemblage results from the death of the whale (possibly via toxin poisoning) shortly after the capture of prey from a single school. Together with morphological data and the frequent discovery of fossil crown ziphiids in deep-sea deposits, this exceptional record supports the hypothesis that only more derived ziphiids were regular deep divers and that the extinction of epipelagic forms may coincide with the radiation of true dolphins.


Asunto(s)
Buceo , Fósiles , Ballenas/anatomía & histología , Animales , Evolución Biológica , Peces/anatomía & histología , Conducta Predatoria/fisiología , Ballenas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA