Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 3108, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326394

RESUMEN

TRUEFAD (TRUE Fiber Atrophy Distinction) is a bioimagery user-friendly tool developed to allow consistent and automatic measurement of myotube diameter in vitro, muscle fiber size and type using rodents and human muscle biopsies. This TRUEFAD package was set up to standardize and dynamize muscle research via easy-to-obtain images run on an open-source plugin for FIJI. We showed here both the robustness and the performance of our pipelines to correctly segment muscle cells and fibers. We evaluated our pipeline on real experiment image sets and showed consistent reliability across images and conditions. TRUEFAD development makes possible systematical and rapid screening of substances impacting muscle morphology for helping scientists focus on their hypothesis rather than image analysis.


Asunto(s)
Fibras Musculares Esqueléticas , Programas Informáticos , Humanos , Reproducibilidad de los Resultados , Fibras Musculares Esqueléticas/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Técnicas de Cultivo de Célula
2.
Nutrients ; 15(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686798

RESUMEN

Aging is associated with a decline in muscle mass and function, leading to increased risk for mobility limitations and frailty. Dietary interventions incorporating specific nutrients, such as pea proteins or inulin, have shown promise in attenuating age-related muscle loss. This study aimed to investigate the effect of pea proteins given with inulin on skeletal muscle in old rats. Old male rats (20 months old) were randomly assigned to one of two diet groups for 16 weeks: a 'PEA' group receiving a pea-protein-based diet, or a 'PEA + INU' group receiving the same pea protein-based diet supplemented with inulin. Both groups showed significant postprandial stimulation of muscle p70 S6 kinase phosphorylation rate after consumption of pea proteins. However, the PEA + INU rats showed significant preservation of muscle mass with time together with decreased MuRF1 transcript levels. In addition, inulin specifically increased PGC1-α expression and key mitochondrial enzyme activities in the plantaris muscle of the old rats. These findings suggest that dietary supplementation with pea proteins in combination with inulin has the potential to attenuate age-related muscle loss. Further research is warranted to explore the underlying mechanisms and determine the optimal dosage and duration of intervention for potential translation to human studies.


Asunto(s)
Proteínas de Guisantes , Humanos , Masculino , Animales , Ratas , Lactante , Inulina/farmacología , Músculo Esquelético , Suplementos Dietéticos , Envejecimiento
3.
Sci Rep ; 13(1): 8773, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253964

RESUMEN

Microsporidia are obligate intracellular parasites able to infect a wide range of hosts from invertebrates to vertebrates. The success of their invasion process is based on an original organelle, the polar tube, which is suddenly extruded from the spore to inoculate the sporoplasm into the host cytoplasm. The polar tube is mainly composed of proteins named polar tube proteins (PTPs). A comparative analysis allowed us to identify genes coding for 5 PTPs (PTP1 to PTP5) in the genome of the microsporidian Anncaliia algerae. While PTP1 and PTP2 are found on the whole polar tube, PTP3 is present in a large part of the extruded polar tube except at its end-terminal part. On the contrary, PTP4 is specifically detected at the end-terminal part of the polar tube. To complete PTPs repertoire, sequential sporal protein extractions were done with high concentration of reducing agents. In addition, a method to purify polar tubes was developed. Mass spectrometry analysis conducted on both samples led to the identification of a PTP3-like protein (PTP3b), and a new PTP (PTP7) only found at the extremity of the polar tube. The specific localization of PTPs asks the question of their roles in cell invasion processes used by A. algerae.


Asunto(s)
Proteínas Fúngicas , Microsporidios , Animales , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Microsporidios/genética , Microsporidios/metabolismo , Citoplasma/metabolismo , Orgánulos/metabolismo
4.
Nutrients ; 6(12): 5500-16, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25470375

RESUMEN

Although the management of malnutrition is a priority in older people, this population shows a resistance to refeeding. Fresh bee pollen contains nutritional substances of interest for malnourished people. The aim was to evaluate the effect of fresh bee pollen supplementation on refeeding efficiency in old malnourished rats. Male 22-month-old Wistar rats were undernourished by reducing food intake for 12 weeks. The animals were then renourished for three weeks with the same diet supplemented with 0%, 5% or 10% of fresh monofloral bee pollen. Due to changes in both lean mass and fat mass, body weight decreased during malnutrition and increased after refeeding with no between-group differences (p < 0.0001). Rats refed with the fresh bee pollen-enriched diets showed a significant increase in muscle mass compared to restricted rats (p < 0.05). The malnutrition period reduced the muscle protein synthesis rate and mTOR/p70S6kinase/4eBP1 activation, and only the 10%-pollen diet was able to restore these parameters. Mitochondrial activity was depressed with food restriction and was only improved by refeeding with the fresh bee pollen-containing diets. In conclusion, refeeding diets that contain fresh monofloral bee pollen improve muscle mass and metabolism in old, undernourished rats.


Asunto(s)
Abejas , Suplementos Dietéticos , Metabolismo Energético , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estado Nutricional , Polen , Desnutrición Proteico-Calórica/dietoterapia , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Adiposidad , Factores de Edad , Animales , Proteínas Portadoras/metabolismo , Citocinas/sangre , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular , Masculino , Músculo Esquelético/fisiopatología , Fosfoproteínas/metabolismo , Desnutrición Proteico-Calórica/sangre , Desnutrición Proteico-Calórica/enzimología , Desnutrición Proteico-Calórica/fisiopatología , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Aumento de Peso
5.
Aging Cell ; 13(6): 1001-11, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25139155

RESUMEN

Obesity and aging are characterized by decreased insulin sensitivity (IS) and muscle protein synthesis. Intramuscular ceramide accumulation has been implicated in insulin resistance during obesity. We aimed to measure IS, muscle ceramide level, protein synthesis, and activation of intracellular signaling pathways involved in translation initiation in male Wistar young (YR, 6-month) and old (OR, 25-month) rats receiving a low- (LFD) or a high-fat diet (HFD) for 10 weeks. A corresponding cellular approach using C2C12 myotubes treated with palmitate to induce intracellular ceramide deposition was taken. A decreased ability of adipose tissue to store lipids together with a reduced adipocyte diameter and a development of fibrosis were observed in OR after the HFD. Consequently, OR fed the HFD were insulin resistant, showed a strong increase in intramuscular ceramide level and a decrease in muscle protein synthesis associated with increased eIF2α phosphorylation. The accumulation of intramuscular lipids placed a lipid burden on mitochondria and created a disconnect between metabolic and regulating pathways in skeletal muscles of OR. In C2C12 cells, palmitate-induced ceramide accumulation was associated with a decreased protein synthesis together with upregulated eIF2α phosphorylation. In conclusion, a reduced ability to expand adipose tissues was found in OR, reflecting a lower lipid buffering capacity. Muscle mitochondrial activity was affected in OR conferring a reduced ability to oxidize fatty acids entering the muscle cell. Hence, OR were more prone to ectopic muscle lipid accumulation than YR, leading to decreased muscle protein anabolism. This metabolic change is a potential therapeutic target to counter sarcopenic obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Sarcopenia/metabolismo , Envejecimiento/metabolismo , Animales , Ceramidas , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar , Transducción de Señal , eIF-2 Quinasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA