Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Lab Chip ; 24(12): 3036-3063, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38804123

RESUMEN

Accurate mechanical measurements of cells has the potential to improve diagnostics, therapeutics and advance understanding of disease mechanisms, where high-resolution mechanical information can be measured by deforming individual cells. Here we evaluate recently developed techniques for measuring cell-scale stiffness properties; while many such techniques have been developed, much of the work examining single-cell stiffness is impacted by difficulties in standardization and comparability, giving rise to large variations in reported mechanical moduli. We highlight the role of underlying mechanical theories driving this variability, and note opportunities to develop novel mechanotyping devices and theoretical models that facilitate convenient and accurate mechanical characterisation. Moreover, many high-throughput approaches are confounded by factors including cell size, surface friction, natural population heterogeneity and convolution of elastic and viscous contributions to cell deformability. We nevertheless identify key approaches based on deformability cytometry as a promising direction for further development, where both high-throughput and accurate single-cell resolutions can be realized.


Asunto(s)
Análisis de la Célula Individual , Humanos , Animales , Fenómenos Biomecánicos
2.
Phys Med Biol ; 69(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38648786

RESUMEN

Objective.Image quality in whole-body MRI (WB-MRI) may be degraded by faulty radiofrequency (RF) coil elements or mispositioning of the coil arrays. Phantom-based quality control (QC) is used to identify broken RF coil elements but the frequency of these acquisitions is limited by scanner and staff availability. This work aimed to develop a scan-specific QC acquisition and processing pipeline to detect broken RF coil elements, which is sufficiently rapid to be added to the clinical WB-MRI protocol. The purpose of this is to improve the quality of WB-MRI by reducing the number of patient examinations conducted with suboptimal equipment.Approach.A rapid acquisition (14 s additional acquisition time per imaging station) was developed that identifies broken RF coil elements by acquiring images from each individual coil element and using the integral body coil. This acquisition was added to one centre's clinical WB-MRI protocol for one year (892 examinations) to evaluate the effect of this scan-specific QC. To demonstrate applicability in multi-centre imaging trials, the technique was also implemented on scanners from three manufacturers.Main results. Over the course of the study RF coil elements were flagged as potentially broken on five occasions, with the faults confirmed in four of those cases. The method had a precision of 80% and a recall of 100% for detecting faulty RF coil elements. The coil array positioning measurements were consistent across scanners and have been used to define the expected variation in signal.Significance. The technique demonstrated here can identify faulty RF coil elements and positioning errors and is a practical addition to the clinical WB-MRI protocol. This approach was fully implemented on systems from two manufacturers and partially implemented on a third. It has potential to reduce the number of clinical examinations conducted with suboptimal hardware and improve image quality across multi-centre studies.


Asunto(s)
Imagen por Resonancia Magnética , Control de Calidad , Imagen de Cuerpo Entero , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/normas , Humanos , Imagen de Cuerpo Entero/instrumentación , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Ondas de Radio
3.
Lab Chip ; 24(6): 1626-1635, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38357759

RESUMEN

Acoustofluidic micromanipulation is an important tool for biomedical research, where acoustic forces offer the ability to manipulate fluids, cells, and particles in a rapid, biocompatible, and contact-free manner. Of particular interest is the investigation of acoustically driven sharp edges, where high tip velocity magnitudes and strong acoustic potential gradients drive rapid motion. Whereas prior devices utilizing 2D sharp edges have demonstrated promise for micromanipulation activities, taking advantage of 3D structures has the potential to increase their performance and the range of manipulation activities. In this work, we investigate high-magnitude acoustic streaming fields in the vicinity of sharp-edged, sub-wavelength 3D microstructures. We numerically model and experimentally demonstrate this in fabricating parametrically configured 3D microstructures whose tip-angle and geometry influence acoustic streaming velocities and the complexity of streaming vortices, finding that the simulated and realized velocities and streaming patterns are both tunable and a function of microstructure shape. These sharp-edge interfaces hold promise for biomedical studies benefiting from precise and targeted micromanipulation.

4.
Lab Chip ; 24(6): 1616-1625, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38288761

RESUMEN

Mechanosensitive proteins play a crucial role in a range of physiological processes, including hearing, tactile sensation and regulating blood flow. While previous work has demonstrated the mechanosensitivity of several proteins, the ability to apply precisely defined mechanical forces to cells in a consistent, replicable manner remains a significant challenge. In this work we present a novel 96-well plate-compatible plugin device for generating highly-controlled flow-based mechanical simulation of cells, which enables quantitative assessment of mechanosensitive protein function. The device is used to mechanically stimulate HEK 293T cells expressing the mechanosensitive protein GPR68, a G protein-coupled receptor. By assaying intracellular calcium levels during flow-based cell stimulation, we determine that GPR68 signalling is a function of the applied shear-force. As this approach is compatible with conventional cell culture plates and allows for simultaneous readout in a conventional fluorescence plate reader, this represents a valuable new tool to investigate mechanotransduction.


Asunto(s)
Técnicas de Cultivo de Célula , Mecanotransducción Celular , Mecanotransducción Celular/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Estrés Mecánico
5.
Small ; 20(23): e2307529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38174594

RESUMEN

Acoustic microfluidic devices have advantages for diagnostic applications, therapeutic solutions, and fundamental research due to their contactless operation, simple design, and biocompatibility. However, most acoustofluidic approaches are limited to forming simple and fixed acoustic patterns, or have limited resolution. In this study,a detachable microfluidic device is demonstrated employing miniature acoustic holograms to create reconfigurable, flexible, and high-resolution acoustic fields in microfluidic channels, where the introduction of a solid coupling layer makes these holograms easy to fabricate and integrate. The application of this method to generate flexible acoustic fields, including shapes, characters, and arbitrarily rotated patterns, within microfluidic channels, is demonstrated.

6.
Micromachines (Basel) ; 14(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38138382

RESUMEN

Microfluidic organ-on-chip models recapitulate increasingly complex physiological phenomena to study tissue development and disease mechanisms, where there is a growing interest in retrieving delicate biological structures from these devices for downstream analysis. Standard bonding techniques, however, often utilize irreversible sealing, making sample retrieval unfeasible or necessitating destructive methods for disassembly. To address this, several commercial devices employ reversible sealing techniques, though integrating these techniques into early-stage prototyping workflows is often ignored because of the variation and complexity of microfluidic designs. Here, we demonstrate the concerted use of rapid prototyping techniques, including 3D printing and laser cutting, to produce multi-material microfluidic devices that can be reversibly sealed. This is enhanced via the incorporation of acrylic components directly into polydimethylsiloxane channel layers to enhance stability, sealing, and handling. These acrylic components act as a rigid surface separating the multiple mechanical seals created between the bottom substrate, the microfluidic features in the device, and the fluidic interconnect to external tubing, allowing for greater design flexibility. We demonstrate that these devices can be produced reproducibly outside of a cleanroom environment and that they can withstand ~1 bar pressures that are appropriate for a wide range of biological applications. By presenting an accessible and low-cost method, we hope to enable microfluidic prototyping for a broad range of biomedical research applications.

7.
Fluids Barriers CNS ; 20(1): 87, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017530

RESUMEN

The blood-brain barrier (BBB) is a selectively permeable membrane that separates the bloodstream from the brain. While useful for protecting neural tissue from harmful substances, brain-related diseases are difficult to treat due to this barrier, as it also limits the efficacy of drug delivery. To address this, promising new approaches for enhancing drug delivery are based on disrupting the BBB using physical means, including optical/photothermal therapy, electrical stimulation, and acoustic/mechanical stimulation. These physical mechanisms can temporarily and locally open the BBB, allowing drugs and other substances to enter. Focused ultrasound is particularly promising, with the ability to focus energies to targeted, deep-brain regions. In this review, we examine recent advances in physical approaches for temporary BBB disruption, describing their underlying mechanisms as well as evaluating the utility of these physical approaches with regard to their potential risks and limitations. While these methods have demonstrated efficacy in disrupting the BBB, their safety, comparative efficacy, and practicality for clinical use remain an ongoing topic of research.


Asunto(s)
Barrera Hematoencefálica , Encefalopatías , Humanos , Barrera Hematoencefálica/fisiología , Encéfalo , Sistemas de Liberación de Medicamentos/métodos
8.
Urology ; 182: 111-124, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37778476

RESUMEN

Think about 6 loved ones of reproductive age in your life. Now imagine that 1 of these 6 individuals is suffering from infertility. Perhaps they feel alone and isolated, unable to discuss their heartbreak with their closest friends, family, and support network. Suffering in silence. In this editorial, we discuss the infertility journey through the lens of the patients, the providers, and the scientists who struggle with infertility each and every day. Our goal is to open a dialogue surrounding infertility, with an emphasis on dismantling the longstanding societal barriers to acknowledging male infertility as a disease. Through education, communication, compassion, and advocacy, together we can all begin to break the deafening silence of male infertility.


Asunto(s)
Infertilidad Masculina , Médicos , Humanos , Masculino , Comunicación , Emociones , Infertilidad Masculina/etiología
9.
Adv Sci (Weinh) ; 10(23): e2301489, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37283454

RESUMEN

Acoustic holography offers the ability to generate designed acoustic fields to manipulate microscale objects. However, the static nature or large aperture sizes of 3D printed acoustic holographic phase plates limits the ability to rapidly alter generated fields. In this work, a programmable acoustic holography approach is demonstrated by which multiple discrete or continuously variable acoustic targets can be created. Here, the holographic phase plate encodes multiple images, where the desired field is produced by modifying the sound speed of an intervening fluid media. Its flexibility is demonstrated in generating various acoustic patterns, including continuous line segments, discrete letters and numbers, using this method as a sound speed indicator and fluid identification tool. This programmable acoustic holography approach has the advantages of generating reconfigurable and designed acoustic fields, with broad potential in microfluidics, cell/tissue engineering, real-time sensing, and medical ultrasound.

10.
Lab Chip ; 23(10): 2447-2457, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37042175

RESUMEN

Acoustofluidic devices are ideal for biomedical micromanipulation applications, with high biocompatibility and the ability to generate force gradients down to the scale of cells. However, complex and designed patterning at the microscale remains challenging. In this work we report an acoustofluidic approach to direct particles and cells within a structured surface in arbitrary configurations. Wells, trenches and cavities are embedded in this surface. Combined with a half-wavelength acoustic field, together these form an 'acoustic stencil' where arbitrary cell and particle arrangements can be reversibly generated. Here a bulk-wavemode lithium niobate resonator generates multiplexed parallel patterning via a multilayer resonant geometry, where cell-scale resolution is accomplished via structured sub-wavelength microfeatures. Uniquely, this permits simultaneous manipulation in a unidirectional, device-spanning single-node field across scalable ∼cm2 areas in a microfluidic device. This approach is demonstrated via patterning of 5, 10 and 15 µm particles and 293-F cells in a variety of arrangements, where these activities are enabling for a range of cell studies and tissue engineering applications via the generation of highly complex and designed acoustic patterns at the microscale.

11.
Adv Mater ; 35(14): e2208002, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36657796

RESUMEN

Acoustic metasurfaces offer unique capabilities to steer and direct acoustic fields, though these are generally composed of complex 3D structures, complicating their fabrication and applicability to higher frequencies. Here, an ultrathin metasurface approach is demonstrated, wherein planarized micropillars in a discretized phase array are utilized. This subwavelength metasurface is easily produced via a single-step etching process and is suitable for megahertz-scale applications. The flexibility of this approach is further demonstrated in the production of complex acoustic patterns via acoustic holography. This metasurface approach, with models used to predict their behavior, has broad potential in applications where robust, high-frequency acoustic manipulation is required, including microfluidics, cell/tissue engineering, and medical ultrasound.

12.
Micromachines (Basel) ; 13(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557503

RESUMEN

Separation and isolation of suspended submicron particles is fundamental to a wide range of applications, including desalination, chemical processing, and medical diagnostics. Ion concentration polarization (ICP), an electrokinetic phenomenon in micro-nano interfaces, has gained attention due to its unique ability to manipulate molecules or particles in suspension and solution. Less well understood, though, is the ability of this phenomenon to generate circulatory fluid flow, and how this enables and enhances continuous particle capture. Here, we perform a comprehensive study of a low-voltage ICP, demonstrating a new electrokinetic method for extracting submicron particles via flow-enhanced particle redirection. To do so, a 2D-FEM model solves the Poisson-Nernst-Planck equation coupled with the Navier-Stokes and continuity equations. Four distinct operational modes (Allowed, Blocked, Captured, and Dodged) were recognized as a function of the particle's charges and sizes, resulting in the capture or release from ICP-induced vortices, with the critical particle dimensions determined by appropriately tuning inlet flow rates (200-800 [µm/s]) and applied voltages (0-2.5 [V]). It is found that vortices are generated above a non-dimensional ICP-induced velocity of U*=1, which represents an equilibrium between ICP velocity and lateral flow velocity. It was also found that in the case of multi-target separation, the surface charge of the particle, rather than a particle's size, is the primary determinant of particle trajectory. These findings contribute to a better understanding of ICP-based particle separation and isolation, as well as laying the foundations for the rational design and optimization of ICP-based sorting systems.

13.
Comput Biol Med ; 149: 106091, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36115298

RESUMEN

PURPOSE: To use deep learning to calculate the uncertainty in apparent diffusion coefficient (σADC) voxel-wise measurements to clinically impact the monitoring of treatment response and improve the quality of ADC maps. MATERIALS AND METHODS: We use a uniquely designed diffusion-weighted imaging (DWI) acquisition protocol that provides gold-standard measurements of σADC to train a deep learning model on two separate cohorts: 16 patients with prostate cancer and 28 patients with mesothelioma. Our network was trained with a novel cost function, which incorporates a perception metric and a b-value regularisation term, on ADC maps calculated by combinations of 2 or 3 b-values (e.g. 50/600/900, 50/900, 50/600, 600/900 s/mm2). We compare the accuracy of the deep-learning based approach for estimation of σADC with gold-standard measurements. RESULTS: The model accurately predicted the σADC for every b-value combination in both cohorts. Mean values of σADC within areas of active disease deviated from those measured by the gold-standard by 4.3% (range, 2.87-6.13%) for the prostate and 3.7% (range, 3.06-4.54%) for the mesothelioma cohort. We also showed that the model can easily be adapted for a different DWI protocol and field-of-view with only a few images (as little as a single patient) using transfer learning. CONCLUSION: Deep learning produces maps of σADC from standard clinical diffusion-weighted images (DWI) when 2 or more b-values are available.


Asunto(s)
Mesotelioma , Neoplasias de la Próstata , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Masculino , Mesotelioma/diagnóstico por imagen , Próstata , Neoplasias de la Próstata/diagnóstico por imagen , Incertidumbre
14.
Front Oncol ; 12: 899180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924167

RESUMEN

Background: Size-based assessments are inaccurate indicators of tumor response in soft-tissue sarcoma (STS), motivating the requirement for new response imaging biomarkers for this rare and heterogeneous disease. In this study, we assess the test-retest repeatability of radiomic features from MR diffusion-weighted imaging (DWI) and derived maps of apparent diffusion coefficient (ADC) in retroperitoneal STS and compare baseline repeatability with changes in radiomic features following radiotherapy (RT). Materials and Methods: Thirty patients with retroperitoneal STS received an MR examination prior to treatment, of whom 23/30 were investigated in our repeatability analysis having received repeat baseline examinations and 14/30 patients were investigated in our post-treatment analysis having received an MR examination after completing pre-operative RT. One hundred and seven radiomic features were extracted from the full manually delineated tumor region using PyRadiomics. Test-retest repeatability was assessed using an intraclass correlation coefficient (baseline ICC), and post-radiotherapy variance analysis (post-RT-IMS) was used to compare the change in radiomic feature value to baseline repeatability. Results: For the ADC maps and DWI images, 101 and 102 features demonstrated good baseline repeatability (baseline ICC > 0.85), respectively. Forty-three and 2 features demonstrated both good baseline repeatability and a high post-RT-IMS (>0.85), respectively. Pearson correlation between the baseline ICC and post-RT-IMS was weak (0.432 and 0.133, respectively). Conclusions: The ADC-based radiomic analysis shows better test-retest repeatability compared with features derived from DWI images in STS, and some of these features are sensitive to post-treatment change. However, good repeatability at baseline does not imply sensitivity to post-treatment change.

15.
Cancer Imaging ; 21(1): 67, 2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34924031

RESUMEN

BACKGROUND: Diffusion weighted imaging (DWI) with intravoxel incoherent motion (IVIM) modelling can inform on tissue perfusion without exogenous contrast administration. Dynamic-contrast-enhanced (DCE) MRI can also characterise tissue perfusion, but requires a bolus injection of a Gadolinium-based contrast agent. This study compares the use of DCE-MRI and IVIM-DWI methods in assessing response to anti-angiogenic treatment in patients with colorectal liver metastases in a cohort with confirmed treatment response. METHODS: This prospective imaging study enrolled 25 participants with colorectal liver metastases to receive Regorafenib treatment. A target metastasis > 2 cm in each patient was imaged before and at 15 days after treatment on a 1.5T MR scanner using slice-matched IVIM-DWI and DCE-MRI protocols. MRI data were motion-corrected and tumour volumes of interest drawn on b=900 s/mm2 diffusion-weighted images were transferred to DCE-MRI data for further analysis. The median value of four IVIM-DWI parameters [diffusion coefficient D (10-3 mm2/s), perfusion fraction f (ml/ml), pseudodiffusion coefficient D* (10-3 mm2/s), and their product fD* (mm2/s)] and three DCE-MRI parameters [volume transfer constant Ktrans (min-1), enhancement fraction EF (%), and their product KEF (min-1)] were recorded at each visit, before and after treatment. Changes in pre- and post-treatment measurements of all MR parameters were assessed using Wilcoxon signed-rank tests (P<0.05 was considered significant). DCE-MRI and IVIM-DWI parameter correlations were evaluated with Spearman rank tests. Functional MR parameters were also compared against Response Evaluation Criteria In Solid Tumours v.1.1 (RECIST) evaluations. RESULTS: Significant treatment-induced reductions of DCE-MRI parameters across the cohort were observed for EF (91.2 to 50.8%, P<0.001), KEF (0.095 to 0.045 min-1, P<0.001) and Ktrans (0.109 to 0.078 min-1, P=0.002). For IVIM-DWI, only D (a non-perfusion parameter) increased significantly post treatment (0.83 to 0.97 × 10-3 mm2/s, P<0.001), while perfusion-related parameters showed no change. No strong correlations were found between DCE-MRI and IVIM-DWI parameters. A moderate correlation was found, after treatment, between Ktrans and D* (r=0.60; P=0.002) and fD* (r=0.67; P<0.001). When compared to RECIST v.1.1 evaluations, KEF and D correctly identified most clinical responders, whilst non-responders were incorrectly identified. CONCLUSION: IVIM-DWI perfusion-related parameters showed limited sensitivity to the anti-angiogenic effects of Regorafenib treatment in colorectal liver metastases and showed low correlation with DCE-MRI parameters, despite profound and significant post-treatment reductions in DCE-MRI measurements. TRIAL REGISTRATION: NCT03010722 clinicaltrials.gov; registration date 6th January 2015.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Imagen por Resonancia Magnética , Estudios Prospectivos
16.
Lab Chip ; 22(1): 90-99, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34860222

RESUMEN

We demonstrate a sawtooth-based metasurface approach for flexibly orienting acoustic fields in a microfluidic device driven by surface acoustic waves (SAW), where sub-wavelength channel features can be used to arbitrarily steer acoustic fringes in a microchannel. Compared to other acoustofluidic methods, only a single travelling wave is used, the fluidic pressure field is decoupled from the fluid domain's shape, and steerable pressure fields are a function of a simply constructed polydimethylsiloxane (PDMS) metasurface shape. Our results are relevant to microfluidic applications including the patterning, concentration, focusing, and separation of microparticles and cells.


Asunto(s)
Microfluídica , Sonido , Acústica , Dispositivos Laboratorio en un Chip
17.
Phys Rev E ; 104(4-2): 045104, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34781567

RESUMEN

Recent studies have demonstrated that periodic time-averaged acoustic fields can be produced from traveling surface acoustic waves (SAWs) in microfluidic devices. This is caused by diffractive effects arising from a spatially limited transducer. This permits the generation of acoustic patterns evocative of those produced from standing waves, but instead with the application of a traveling wave. While acoustic pressure fields in such systems have been investigated, acoustic streaming from diffractive fields has not. In this work we examine this phenomenon and demonstrate the appearance of geometry-dependent acoustic vortices, and demonstrate that periodic, identically rotating Rayleigh streaming vortices result from the imposition of a traveling SAW. This is also characterized by a channel-spanning flow that bridges between adjacent vortices along the channel top and bottom. We find that the channel dimensions determine the types of streaming that develops; while Eckart streaming has been previously presumed to be a distinguishing feature of traveling-wave actuation, we show that Rayleigh streaming vortices also results. This has implications for microfluidic actuation, where traveling acoustic waves have applications in microscale mixing, separation, and patterning.

18.
Radiol Artif Intell ; 3(5): e200279, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34617028

RESUMEN

PURPOSE: To use deep learning to improve the image quality of subsampled images (number of acquisitions = 1 [NOA1]) to reduce whole-body diffusion-weighted MRI (WBDWI) acquisition times. MATERIALS AND METHODS: Both retrospective and prospective patient groups were used to develop a deep learning-based denoising image filter (DNIF) model. For initial model training and validation, 17 patients with metastatic prostate cancer with acquired WBDWI NOA1 and NOA9 images (acquisition period, 2015-2017) were retrospectively included. An additional 22 prospective patients with advanced prostate cancer, myeloma, and advanced breast cancer were used for model testing (2019), and the radiologic quality of DNIF-processed NOA1 (NOA1-DNIF) images were compared with NOA1 images and clinical NOA16 images by using a three-point Likert scale (good, average, or poor; statistical significance was calculated by using a Wilcoxon signed ranked test). The model was also retrained and tested in 28 patients with malignant pleural mesothelioma (MPM) who underwent lung MRI (2015-2017) to demonstrate feasibility in other body regions. RESULTS: The model visually improved the quality of NOA1 images in all test patients, with the majority of NOA1-DNIF and NOA16 images being graded as either "average" or "good" across all image-quality criteria. From validation data, the mean apparent diffusion coefficient (ADC) values within NOA1-DNIF images of bone disease deviated from those within NOA9 images by an average of 1.9% (range, 1.1%-2.6%). The model was also successfully applied in the context of MPM; the mean ADCs from NOA1-DNIF images of MPM deviated from those measured by using clinical-standard images (NOA12) by 3.7% (range, 0.2%-10.6%). CONCLUSION: Clinical-standard images were generated from subsampled images by using a DNIF.Keywords: Image Postprocessing, MR-Diffusion-weighted Imaging, Neural Networks, Oncology, Whole-Body Imaging, Supervised Learning, MR-Functional Imaging, Metastases, Prostate, Lung Supplemental material is available for this article. Published under a CC BY 4.0 license.

19.
J Acoust Soc Am ; 150(3): 2030, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34598640

RESUMEN

Both the scarcity and environmental impact of disposable face masks, as in the COVID-19 pandemic, have instigated the recent development of reusable masks. Such face masks reduce transmission of infectious agents and particulates, but often impact a user's ability to be understood when materials, such as silicone or hard polymers, are used. In this work, we present a numerical optimisation approach to optimise waveguide topology, where a waveguide is used to transmit and direct sound from the interior of the mask volume to the outside air. This approach allows acoustic energy to be maximised according to specific frequency bands, including those most relevant to human speech. We employ this method to convert a resuscitator mask, made of silicone, into respiration personal protective equipment (PPE) that maximises the speech intelligibility index (SII). We validate this approach experimentally as well, showing improved SII when using the fabricated device. Together, this design represents a unique and effective approach to utilize and adapt available apparatus to filter air while improving the ability to communicate effectively, including in healthcare settings.


Asunto(s)
COVID-19 , Inteligibilidad del Habla , Humanos , Máscaras , Pandemias , Respiración , SARS-CoV-2
20.
Nano Lett ; 21(16): 6835-6842, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34355908

RESUMEN

Sorting of extracellular vesicles has important applications in early stage diagnostics. Current exosome isolation techniques, however, suffer from being costly, having long processing times, and producing low purities. Recent work has shown that active sorting via acoustic and electric fields are useful techniques for microscale separation activities, where combining these has the potential to take advantage of multiple force mechanisms simultaneously. In this work, we demonstrate an approach using both electrical and acoustic forces to manipulate bioparticles and submicrometer particles for deterministic sorting, where we find that the concurrent application of dielectrophoretic (DEP) and acoustophoretic forces decreases the critical diameter at which particles can be separated. We subsequently utilize this approach to sort subpopulations of extracellular vesicles, specifically exosomes (<200 nm) and microvesicles (>300 nm). Using our combined acoustic/electric approach, we demonstrate exosome purification with more than 95% purity and 81% recovery, well above comparable approaches.


Asunto(s)
Exosomas , Técnicas Analíticas Microfluídicas , Acústica , Electricidad , Electroforesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA