Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Sci Rep ; 12(1): 22104, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543804

RESUMEN

Avian migratory processes are typically precisely oriented, yet vagrants are frequently recorded outside their normal range. Wind displaced vagrants often show corrective behaviour, and as an appropriate response is likely adaptive. We investigated the physiological response to vagrancy in passerines. Activation of the emergency life-history stage (ELHS), assessed by high baseline plasma corticosterone, is a potential mechanism to elicit compensatory behaviour in response to challenges resulting from navigational error, coupled with response to fuel load and flight. We compared circulating plasma corticosterone concentrations and body condition between three migratory groups in autumn: (1) wind displaced southwest (SW) vagrants and (2) long range southeast (SE) vagrants on the remote Faroe Islands, and (3) birds within the expected SW migratory route (controls) on the Falsterbo peninsula, Sweden. Vagrants were further grouped by those sampled immediately upon termination of over-water migratory flight and those already on the island. In all groups there was no indication of the activation of the ELHS in response to vagrancy. We found limited support for an increased rate of corticosterone elevation within our 3 min sample interval in a single species, but this was driven by an individual ELHS outlier. Fat scores were negatively correlated with circulating corticosterone; this relationship may suggest that ELHS activation depends upon an individual's energetic states. Interestingly, in individuals caught at the completion of an obligate long-distance flight, we found some evidence of corticosterone suppression. Although limited, data did support the induction of negative feedback mechanisms that suppress corticosterone during endurance exercise, even when fuel loads are low.


Asunto(s)
Migración Animal , Corticosterona , Humanos , Migración Animal/fisiología , Estaciones del Año , Viento , Suecia , Vuelo Animal/fisiología
2.
Ocul Surf ; 22: 245-266, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34520870

RESUMEN

Aniridia, a rare congenital disease, is often characterized by a progressive, pronounced limbal insufficiency and ocular surface pathology termed aniridia-associated keratopathy (AAK). Due to the characteristics of AAK and its bilateral nature, clinical management is challenging and complicated by the multiple coexisting ocular and systemic morbidities in aniridia. Although it is primarily assumed that AAK originates from a congenital limbal stem cell deficiency, in recent years AAK and its pathogenesis has been questioned in the light of new evidence and a refined understanding of ocular development and the biology of limbal stem cells (LSCs) and their niche. Here, by consolidating and comparing the latest clinical and preclinical evidence, we discuss key unanswered questions regarding ocular developmental aspects crucial to AAK. We also highlight hypotheses on the potential role of LSCs and the ocular surface microenvironment in AAK. The insights thus gained lead to a greater appreciation for the role of developmental and cellular processes in the emergence of AAK. They also highlight areas for future research to enable a deeper understanding of aniridia, and thereby the potential to develop new treatments for this rare but blinding ocular surface disease.


Asunto(s)
Aniridia , Enfermedades de la Córnea , Enfermedades de la Esclerótica , Córnea , Enfermedades de la Córnea/etiología , Humanos , Células Madre
3.
PLoS One ; 15(3): e0230151, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32191719

RESUMEN

The Mediterranean Basin represents a Global Biodiversity Hotspot where many organisms show high inter- and intraspecific differentiation. Extant phylogeographic patterns of terrestrial circum-Mediterranean faunas were mainly shaped through Pleistocene range shifts and range fragmentations due to retreat into different glacial refugia. Thus, several extant Mediterranean bird species have diversified by surviving glaciations in different hospitable refugia and subsequently expanded their distribution ranges during the Holocene. Such a scenario was also suggested for the Eurasian Wren (Nannus troglodytes) despite the lack of genetic data for most Mediterranean subspecies. Our phylogenetic multi-locus analysis comprised 18 out of 28 currently accepted subspecies of N. troglodytes, including all but one subspecies which are present in the Mediterranean Basin. The resulting phylogenetic reconstruction dated the onset of the entire Holarctic radiation of three Nannus species to the early Pleistocene. In the Eurasian Wren, two North African subspecies represented separate basal lineages from the Maghreb (N. t. kabylorum) and from the Libyan Cyrenaica (N. t. juniperi), being only distantly related to other Mediterranean populations. Although N. troglodytes appeared to be paraphyletic with respect to the Nearctic Winter Wren (N. hiemalis), respective nodes did not receive strong statistical support. In contrast, paraphyly of the Ibero-Maghrebian taxon N. t. kabylorum was strongly supported. Southern Iberian populations of N. t. kabylorum did not clade with Maghrebian populations of the same subspecies but formed a sister clade to a highly diverse European clade (including nominate N. t. troglodytes and eight further taxa). In accordance with a pattern also found in other birds, Eurasian populations were split into a western clade (Europe, Caucasus) and an eastern clade (Central Asia, Sino-Himalayas, East Asia). This complex phylogeographic pattern revealed cryptic diversification in N. troglodytes, especially in the Iberio-Maghrebian region.


Asunto(s)
Filogeografía , Pájaros Cantores/clasificación , África del Norte , Animales , Biodiversidad , Evolución Biológica , ADN Mitocondrial/genética , Europa (Continente) , Marcadores Genéticos/genética , Variación Genética , Filogenia , Pájaros Cantores/genética
4.
Nat Commun ; 11(1): 1405, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179745

RESUMEN

Epithelial cell monolayers show remarkable displacement and velocity correlations over distances of ten or more cell sizes that are reminiscent of supercooled liquids and active nematics. We show that many observed features can be described within the framework of dense active matter, and argue that persistent uncoordinated cell motility coupled to the collective elastic modes of the cell sheet is sufficient to produce swirl-like correlations. We obtain this result using both continuum active linear elasticity and a normal modes formalism, and validate analytical predictions with numerical simulations of two agent-based cell models, soft elastic particles and the self-propelled Voronoi model together with in-vitro experiments of confluent corneal epithelial cell sheets. Simulations and normal mode analysis perfectly match when tissue-level reorganisation occurs on times longer than the persistence time of cell motility. Our analytical model quantitatively matches measured velocity correlation functions over more than a decade with a single fitting parameter.


Asunto(s)
Células Epiteliales/química , Células Epiteliales/citología , Línea Celular , Movimiento Celular , Elasticidad , Humanos , Modelos Biológicos , Movimiento (Física)
5.
PLoS One ; 14(1): e0210268, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30608988

RESUMEN

The Common Chiffchaff Phylloscopus collybita is an abundant, polytypic Palearctic bird. Validity of some of its subspecies is controversial and birds from some parts of the species range remain unclassified taxonomically. The relationships among populations from different geographic areas have not been sufficiently explored with molecular data. In this study we analyzed the relationships among the four species in the 'chiffchaff complex' (Common Chiffchaff, Iberian Chiffchaff P. ibericus, Canary Islands Chiffchaff P. canariensis and Mountain Chiffchaff P. sindianus), and the patterns of intraspecific geographic variation in the mtDNA ND2 gene and intron 9 of the Z-linked aconitase gene (ACO1I9) across the Common Chiffchaff range, including a recently discovered population breeding on Mt. Hermon (Anti-Lebanon mountains). Our data supported the monophyly of the chiffchaff complex and its current systematics at the species level. Within the Common Chiffchaff, the Siberian race P. c. tristis was the most differentiated subspecies and may represent a separate or incipient species. Other Common Chiffchaff subspecies also were differentiated in their mtDNA, however, lineages of neighboring subspecies formed wide zones of introgression. The Mt. Hermon population was of mixed genetic origin but contained some birds with novel unique lineage that could not be assigned to known subspecies. All Common Chiffchaff lineages diverged at the end of the Ionian stage of Pleistocene. Lineage sorting of ACO1I9 alleles was not as complete as that of mtDNA. Chiffchaff species were mostly distinct at ACO1I9, except the Common and Canary Islands Chiffchaffs that shared multiple alleles. An AMOVA identified geographic structure in Common Chiffchaff ACO1I9 variation that was broadly consistent with that of mtDNA ND2 gene. The genetic and other data suggest the chiffchaff complex to be a group of evolutionarily young taxa that represent a paradigm of 'species evolution in action' from intergrading subspecies through to apparently complete biological speciation.


Asunto(s)
Aconitato Hidratasa/genética , ADN Mitocondrial/genética , Evolución Molecular , Variación Genética , NADH Deshidrogenasa/genética , Passeriformes/genética , Animales , Haplotipos , Filogeografía
6.
J Anat ; 234(1): 106-119, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-28833131

RESUMEN

The role of the core planar cell polarity (PCP) pathway protein, Vangl2, was investigated in the corneal epithelium of the mammalian eye, a paradigm anatomical model of planar cell migration. The gene was conditionally knocked out in vivo and knocked down by siRNA, followed by immunohistochemical, behavioural and morphological analysis of corneal epithelial cells. The primary defects observed in vivo were of apical-basal organisation of the corneal epithelium, with abnormal stratification throughout life, mislocalisation of the cell membrane protein, Scribble, to the basal side of cells, and partial loss of the epithelial basement membrane. Planar defects in migration after wounding and in the presence of an applied electric field were noted. However, knockdown of Vangl2 also retarded cell migration in individual cells that had no contact with their neighbours, which precluded a classic PCP mechanism. It is concluded that some of the planar polarity phenotypes in PCP mutants may arise from disruption of apical-basal polarity.


Asunto(s)
Polaridad Celular/fisiología , Epitelio Corneal/citología , Epitelio Corneal/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Animales , Línea Celular Transformada , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Humanos , Ratones , Ratones Endogámicos CBA , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética
7.
Stem Cell Res ; 33: 185-198, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30439642

RESUMEN

Limbal epithelial stem cells (LESCs) are believed to be responsible for corneal epithelial maintenance and repair after injury, but their activity has never been properly quantified in aging or wounded eyes. In this study, labelling with thymidine analogues, 5-iodo-2'-deoxyuridine (IdU), 5-chloro-2'-deoxyuridine (CldU) and 5-ethynyl-2'-deoxyuridine (EdU), was used to estimate cell-cycle time of the corneal and limbal epithelia in wild-type eyes, comparing aging (12 months) and young adult (8 week) mice. In C57BL/6 mice, cells cycled significantly faster in the central corneal epithelium of aging eyes (3.24 ±â€¯0.2 days) compared to 10 week old mice (4.97 ±â€¯0.5 days). Long-term labelling with IdU was used to detect slow-cycling stem cells, followed by CldU or EdU labelling to quantify the proliferative dynamics of LESCs during corneal wound healing. In unwounded eyes, 4.52 ±â€¯1.4% of LESCs were shown to enter S phase in a 24 h period and were estimated to divide every 2-3 weeks. Within 24 h of corneal injury this rose significantly to 32.8 ±â€¯10.0% of stem cells indicating a seven-fold increase in activation. In contrast, no comparable increase in LESC activation was observed in aging mice after wounding. In the 24-48 h period after wounding in young adults, LESC activation continued to increase (86.5 ±â€¯8.2% of label-retaining cells in wounded eye were in S-phase) but surprisingly, 46.0 ±â€¯9.4% of LESCs were observed to reenter S-phase in the contralateral unwounded eye. These data imply an unsuspected systemic effect of corneal wounding on LESC activation suggesting that injury to one eye elicits a regenerative response in both.


Asunto(s)
Células Epiteliales/metabolismo , Epitelio Corneal/metabolismo , Limbo de la Córnea/metabolismo , Células Madre/metabolismo , Animales , Humanos , Ratones
8.
Development ; 145(19)2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305274

RESUMEN

Absence of the developing lens results in severe eye defects, including substantial reductions in eye size. How the lens controls eye expansion and the underlying signalling pathways are very poorly defined. We identified RDH10, a gene crucial for retinoic acid synthesis during embryogenesis, as a key factor downregulated in the peripheral retina (presumptive ciliary body region) of lens-removed embryonic chicken eyes prior to overt reductions in eye size. This is associated with a significant decrease in retinoic acid synthesis by lens-removed eyes. Restoring retinoic acid signalling in lens-removed eyes by implanting beads soaked in retinoic acid or retinal, but not vitamin A, rescued eye size. Conversely, blocking retinoic acid synthesis decreased eye size in lens-containing eyes. Production of collagen II and collagen IX, which are major vitreal proteins, is also regulated by the lens and retinoic acid signalling. These data mechanistically link the known roles of both the lens and retinoic acid in normal eye development, and support a model whereby retinoic acid production by the peripheral retina acts downstream of the lens to support vitreous production and eye expansion.


Asunto(s)
Cristalino/embriología , Cristalino/metabolismo , Transducción de Señal , Tretinoina/metabolismo , Aldehído Deshidrogenasa/metabolismo , Animales , Tipificación del Cuerpo/efectos de los fármacos , Embrión de Pollo , Cuerpo Ciliar/efectos de los fármacos , Cuerpo Ciliar/metabolismo , Colágeno/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Cristalino/anatomía & histología , Cristalino/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Tenascina/metabolismo , Tretinoina/farmacología , Vitamina A/farmacología
9.
BMC Res Notes ; 11(1): 705, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30290846

RESUMEN

OBJECTIVE: The corneas of heterozygous Pax6+/- mice develop abnormally and deteriorate further after birth but it is not known whether the postnatal deterioration is predetermined by abnormal development. Our objective was to identify whether depletion of Pax6 in adult mice caused any corneal abnormalities, similar to those in Pax6+/- mice, where Pax6 levels are low throughout development and adulthood. We used two tamoxifen-inducible, Cre-loxP experimental strategies to deplete Pax6 either ubiquitously or in a restricted range of cell types. RESULTS: In a preliminary study, ubiquitous depletion of Pax6 by tamoxifen treatment of E9.5 CAG-CreERTg/-;Pax6fl/fl embryos affected eye development. Tamoxifen treatment of 12-week old, adult CAG-CreERTg/-;Pax6fl/+ and CAG-CreERTg/-;Pax6fl/fl mice resulted in weak and/or patchy Pax6 immunostaining in the corneal epithelium but caused no corneal abnormalities. GFP staining in tamoxifen-treated CAG-CreERTg/-;RCE:loxP reporter mice was also patchy. We attribute patchy Pax6 staining to mosaic deletion of the Pax6fl allele, probably caused by mosaic CAG-CreERTg expression. In a parallel study, we treated adult Krt19-CreERTg/-;Pax6fl/+ mice with tamoxifen to try to deplete Pax6 in limbal epithelial stem cells (LESCs) which replenish the corneal epithelium. However, Pax6 staining remained strong after a 12-week chase period so the Krt19-CreERTg/- transgene may have failed to target LESCs.


Asunto(s)
Enfermedades de la Córnea/metabolismo , Enfermedades de la Córnea/patología , Epitelio Corneal/patología , Factor de Transcripción PAX6/deficiencia , Factores de Edad , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos
10.
Stem Cell Res ; 30: 1-11, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29777801

RESUMEN

The use of mice that are mosaic for reporter gene expression underlies many lineage-tracing studies in stem cell biology. For example, using mosaic LacZ reporter mice, it was shown that limbal epithelial stem cells (LESCs) around the periphery of the cornea maintain radial sectors of the corneal epithelium and that radial stripe numbers declined with age. Originally, the corneal results were interpreted as progressive, age-related loss or irreversible inactivation of some LESC clones. In this study we used computer simulations to show that these results could also be explained by stochastic replacement of LESCs by neighbouring LESCs, leading to neutral drift of LESC populations. This was shown to reduce the number of coherent clones of LESCs and hence would coarsen the mosaic pattern in the corneal epithelium without reducing the absolute number of LESCs. Simulations also showed that corrected stripe numbers declined more slowly when LESCs were grouped non-randomly and that mosaicism was rarely lost unless simulated LESC numbers were unrealistically low. Possible reasons why age-related changes differ between mosaic corneal epithelia and other systems, such as adrenal cortices and intestinal crypts, are discussed.


Asunto(s)
Células Epiteliales/metabolismo , Limbo de la Córnea/metabolismo , Células Madre/metabolismo , Animales , Proliferación Celular , Simulación por Computador , Humanos , Ratones , Células Madre/citología
11.
Development ; 145(3)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29439133

RESUMEN

Genetic factors underlying the human limb abnormality congenital talipes equinovarus ('clubfoot') remain incompletely understood. The spontaneous autosomal recessive mouse 'peroneal muscular atrophy' mutant (PMA) is a faithful morphological model of human clubfoot. In PMA mice, the dorsal (peroneal) branches of the sciatic nerves are absent. In this study, the primary developmental defect was identified as a reduced growth of sciatic nerve lateral motor column (LMC) neurons leading to failure to project to dorsal (peroneal) lower limb muscle blocks. The pma mutation was mapped and a candidate gene encoding LIM-domain kinase 1 (Limk1) identified, which is upregulated in mutant lateral LMC motor neurons. Genetic and molecular analyses showed that the mutation acts in the EphA4-Limk1-Cfl1/cofilin-actin pathway to modulate growth cone extension/collapse. In the chicken, both experimental upregulation of Limk1 by electroporation and pharmacological inhibition of actin turnover led to defects in hindlimb spinal motor neuron growth and pathfinding, and mimicked the clubfoot phenotype. The data support a neuromuscular aetiology for clubfoot and provide a mechanistic framework to understand clubfoot in humans.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/embriología , Pie Equinovaro/embriología , Pie Equinovaro/genética , Quinasas Lim/genética , Mutación , Animales , Axones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Embrión de Pollo , Mapeo Cromosómico , Pie Equinovaro/patología , Modelos Animales de Enfermedad , Femenino , Miembro Posterior/anomalías , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Neuronas Motoras/patología , Músculo Esquelético/anomalías , Músculo Esquelético/inervación , Nervio Peroneo/anomalías , Fenotipo , Embarazo , Receptor EphA4/deficiencia , Receptor EphA4/genética , Nervio Ciático/anomalías , Regulación hacia Arriba
12.
J Cell Physiol ; 233(3): 2202-2212, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28661005

RESUMEN

The functional roles of bioelectrical signals (ES) created by the flow of specific ions at the mammalian lens equator are poorly understood. We detected that mature, denucleated lens fibers expressed high levels of the α1 and ß1 subunits of Na+ /K+ -ATPase (ATP1A1 and ATP1B1 of the sodium pump) and had a hyperpolarized membrane potential difference (Vmem ). In contrast, differentiating, nucleated lens fiber cells had little ATP1A1 and ATP1B1 and a depolarized Vmem . Mimicking the natural equatorial ES with an applied electrical field (EF) induced a striking reorientation of lens epithelial cells to lie perpendicular to the direction of the EF. An EF also promoted the expression of ß-crystallin, aquaporin-0 (AQP0) and the Beaded Filament Structural Protein 2 (BFSP2) in lens epithelial cells (LECs), all of which are hallmarks of differentiation. In addition, applied EF activated the AKT and CDC2 and inhibition of AKT reduced the activation of CDC2. Our results indicate that the endogenous bioelectrical signal at the lens equator promotes differentiation of LECs into denucleated lens fiber cells via depolarization of Vmem. Development of methods and devices of EF application or amplification in vivo may supply a novel treatment for lens diseases and even promote regeneration of a complete new lens following cataract surgery.


Asunto(s)
Conductividad Eléctrica , Células Epiteliales/citología , Cristalino/citología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Acuaporinas/biosíntesis , Proteína Quinasa CDC2/metabolismo , Bovinos , Diferenciación Celular/fisiología , Línea Celular , Activación Enzimática/fisiología , Proteínas del Ojo/biosíntesis , Humanos , Proteínas de Filamentos Intermediarios/biosíntesis , Potenciales de la Membrana/fisiología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , beta-Cristalinas/biosíntesis
13.
R Soc Open Sci ; 3(10): 160658, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27853583

RESUMEN

This study shows that the core planar cell polarity (PCP) genes direct the aligned cell migration in the adult corneal epithelium, a stratified squamous epithelium on the outer surface of the vertebrate eye. Expression of multiple core PCP genes was demonstrated in the adult corneal epithelium. PCP components were manipulated genetically and pharmacologically in human and mouse corneal epithelial cells in vivo and in vitro. Knockdown of VANGL2 reduced the directional component of migration of human corneal epithelial (HCE) cells without affecting speed. It was shown that signalling through PCP mediators, dishevelled, dishevelled-associated activator of morphogenesis and Rho-associated protein kinase directs the alignment of HCE cells by affecting cytoskeletal reorganization. Cells in which VANGL2 was disrupted tended to misalign on grooved surfaces and migrate across, rather than parallel to the grooves. Adult corneal epithelial cells in which Vangl2 had been conditionally deleted showed a reduced rate of wound-healing migration. Conditional deletion of Vangl2 in the mouse corneal epithelium ablated the normal highly stereotyped patterns of centripetal cell migration in vivo from the periphery (limbus) to the centre of the cornea. Corneal opacity owing to chronic wounding is a major cause of degenerative blindness across the world, and this study shows that Vangl2 activity is required for directional corneal epithelial migration.

14.
Mol Vis ; 22: 990-1004, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27563231

RESUMEN

PURPOSE: Patients with a heterozygous mutation in the gene encoding the transcription factor, PAX6, have a degenerative corneal opacity associated with failure of normal radial epithelial cell migration across the corneal surface and a reported wound healing defect. This study investigated the guidance mechanisms that drive the directed migration of corneal epithelial cells. METHODS: In vivo corneal epithelial wounding was performed in adult wild-type and Pax6(+/-) mice, and the healing migration rates were compared. To investigate the control of the cell migration direction, primary corneal epithelial cells from wild-type and Pax6(+/-) mice were plated on grooved quartz substrates, and alignment relative to the grooves was assayed. A reconstructed corneal culture system was developed in which dissociated wild-type and genetically mutant corneal epithelial cells could be cultured on a de-epithelialized corneal stroma or basement membrane and their migration assayed with time-lapse microscopy. RESULTS: The Pax6(+/-) cells efficiently re-epithelialized corneal wounds in vivo but had mild slowing of healing migration compared to the wild-type. Cells aligned parallel to quartz grooves in vitro, but the Pax6(+/-) cells were less robustly oriented than the wild-type. In the reconstructed corneal culture system, corneal epithelial cells continued to migrate radially, showing that the cells are guided by contact-mediated cues from the basement membrane. Recombining wild-type and Pax6 mutant corneal epithelial cells with wild-type and Pax6 mutant corneal stroma showed that normal Pax6 dosage was required autonomously in the epithelial cells for directed migration. Integrin-mediated attachment to the substrate, and intracellular PI3Kγ activity, were required for migration. Pharmacological inhibition of cAMP signaling randomized migration tracks in reconstructed corneas. CONCLUSIONS: Striking patterns of centripetal migration of corneal epithelial cells observed in vivo are driven by contact-mediated cues operating through an intracellular cAMP pathway, and failure to read these cues underlies the migration defects that accompany corneal degeneration in patients with mutations in PAX6.


Asunto(s)
Movimiento Celular/fisiología , Lesiones de la Cornea/fisiopatología , Células Epiteliales/fisiología , Adhesiones Focales/fisiología , Factor de Transcripción PAX6/fisiología , Cicatrización de Heridas/fisiología , Animales , Fosfatidilinositol 3-Quinasa Clase Ib/fisiología , Sustancia Propia/citología , AMP Cíclico/fisiología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Repitelización/fisiología , Transducción de Señal/fisiología
15.
Stem Cell Res ; 15(3): 665-677, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26554513

RESUMEN

The limbal epithelial stem cell (LESC) hypothesis proposes that LESCs in the corneal limbus maintain the corneal epithelium both during normal homeostasis and wound repair. The alternative corneal epithelial stem cell (CESC) hypothesis proposes that LESCs are only involved in wound repair and CESCs in the corneal epithelium itself maintain the corneal epithelium during normal homeostasis. We used tamoxifen-inducible, CreER-loxP lineage tracing to distinguish between these hypotheses. Clones of labelled cells were induced in adult CAGG-CreER;R26R-LacZ reporter mice and their distributions analysed after different chase periods. Short-lived clones, derived from labelled transient amplifying cells, were shed during the chase period and long-lived clones, derived from stem cells, expanded. At 6 weeks, labelled clones appeared at the periphery, extended centripetally as radial stripes and a few reached the centre by 14 weeks. Stripe numbers depended on the age of tamoxifen treatment. Stripes varied in length, some were discontinuous, few reached the centre and almost half had one end at the limbus. Similar stripes extended across the cornea in CAGG-CreER;R26R-mT/mG reporter mice. The distributions of labelled clones are inconsistent with the CESC hypothesis and support the LESC hypothesis if LESCs cycle between phases of activity and quiescence, each lasting several weeks.


Asunto(s)
Epitelio Corneal/metabolismo , Limbo de la Córnea/metabolismo , Células Madre/metabolismo , Animales , Linaje de la Célula , Proliferación Celular , Epitelio Corneal/citología , Homeostasis , Limbo de la Córnea/citología , Ratones , Células Madre/citología , Cicatrización de Heridas
16.
World J Stem Cells ; 7(2): 281-99, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25815115

RESUMEN

In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed by the LESC hypothesis.

17.
PLoS One ; 9(10): e109193, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25272013

RESUMEN

Eye phenotypes were investigated in Le-Cre(Tg/-); Pax6(fl/+) mice, which were expected to show tissue-specific reduction of Pax6 in surface ectoderm derivatives. To provide a better comparison with our previous studies of Pax6(+/-) eye phenotypes, hemizygous Le-Cre(Tg/-) and heterozygous Pax6(fl/+)mice were crossed onto the CBA/Ca genetic background. After the Le-Cre transgene had been backcrossed to CBA/Ca for seven generations, significant eye abnormalities occurred in some hemizygous Le-Cre(Tg/-); Pax6(+/+) controls (without a floxed Pax6(fl) allele) as well as experimental Le-Cre(Tg/-); Pax6(fl/+) mice. However, no abnormalities were seen in Le-Cre(-/-); Pax6(fl/+) or Le-Cre(-/-); Pax6(+/+) controls (without the Le-Cre transgene). The severity and frequency of the eye abnormalities in Le-Cre(Tg/-); Pax6(+/+) control mice diminished after backcrossing Le-Cre(Tg/-) mice to the original FVB/N strain for two generations, showing that the effect was reversible. This genetic background effect suggests that the eye abnormalities are a consequence of an interaction between the Le-Cre transgene and alleles of unknown modifier genes present in certain genetic backgrounds. The abnormalities were also ameliorated by introducing additional Pax6 gene copies on a CBA/Ca background, suggesting involvement of Pax6 depletion in Le-Cre(Tg/-); Pax6(+/+) mice rather than direct action of Cre recombinase on cryptic pseudo-loxP sites. One possibility is that expression of Cre recombinase from the Pax6-Le regulatory sequences in the Le-Cre transgene depletes cofactors required for endogenous Pax6 gene expression. Our observation that eye abnormalities can occur in hemizygous Le-Cre(Tg/-); Pax6(+/+) mice, in the absence of a floxed allele, demonstrates the importance of including all the relevant genetic controls in Cre-loxP experiments.


Asunto(s)
Anomalías del Ojo/genética , Integrasas/genética , Animales , Ratones , Ratones Endogámicos CBA , Ratones Transgénicos
18.
Neuroscience ; 271: 119-36, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24785679

RESUMEN

Mental and neurological illnesses affect one in four people. While genetic linkage analyses have shown an association of nuclear distribution factor E (NDE1, or NudE) and its ohnolog NDE-like 1 (NDEL1, or Nudel) with mental disorders, the cellular mechanisms remain unclear. In the present study, we have demonstrated that Nde1 and Ndel1 are differentially localised in the subventricular zone (SVZ) of the forebrain and the subgranular zone (SGZ) of the hippocampus, two regions where neurogenesis actively occurs in the adult brain. Nde1, but not Ndel1, is localized to putative SVZ stem cells, and to actively dividing progenitors of the SGZ. The influence of these proteins on neural stem cell differentiation was investigated by overexpression in a hippocampal neural stem cell line, HCN-A94. Increasing Nde1 expression in this neural stem cell line led to increased neuronal differentiation while decreasing levels of astroglial differentiation. In primary cultured neurons and astrocytes, Nde1 and Ndel1 were found to have different but comparable subcellular localizations. In addition, we have shown for the first time that Nde1 is heterogeneously distributed in cortical astrocytes of human brains. Our data indicate that Nde1 and Ndel1 have distinct but overlapping distribution patterns in mouse brain and cultured nerve cells. They may function differently and therefore their dosage changes may contribute to some aspects of mental disorders.


Asunto(s)
Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/metabolismo , Animales , Astrocitos/metabolismo , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Células Cultivadas , Hipocampo/metabolismo , Humanos , Ventrículos Laterales/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Persona de Mediana Edad , Neuronas/metabolismo , Prosencéfalo/metabolismo , Ratas
19.
PLoS One ; 8(1): e54100, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23382871

RESUMEN

BACKGROUND: Idiopathic congenital talipes equinovarus (CTEV) is the commonest form of clubfoot. Its exact cause is unknown, although it is related to limb development. The aim of this study was to quantify the anatomy of the muscle, subcutaneous fat, tibia, fibula and arteries in the lower legs of teenagers and young adults with CTEV using 3D magnetic resonance imaging (MRI), and thus to investigate the anatomical differences between CTEV participants and controls. METHODOLOGY/PRINCIPAL FINDINGS: The lower legs of six CTEV (2 bilateral, 4 unilateral) and five control young adults (age 12-28) were imaged using a 3T MRI Philips scanner. 5 of the CTEV participants had undergone soft-tissue and capsular release surgery. 3D T1-weighted and 3D magnetic resonance angiography (MRA) images were acquired. Segmentation software was used for volumetric, anatomical and image analysis. Kolmogorov-Smirnov tests were performed. The volumes of the lower affected leg, muscle, tibia and fibula in unilateral CTEV participants were consistently smaller compared to their contralateral unaffected leg, this was most pronounced in muscle. The proportion of muscle in affected CTEV legs was significantly reduced compared with control and unaffected CTEV legs, whilst proportion of muscular fat increased. No spatial abnormalities in the location or branching of arteries were detected, but hypoplastic anomalies were observed. CONCLUSIONS/SIGNIFICANCE: Combining 3D MRI and MRA is effective for quantitatively characterizing CTEV anatomy. Reduction in leg muscle volume appears to be a sensitive marker. Since 5/6 CTEV cases had soft-tissue surgery, further work is required to confirm that the treatment did not affect the MRI features observed. We propose that the proportion of muscle and intra-muscular fat within the lower leg could provide a valuable addition to current clinical CTEV classification. These measures could be useful for clinical care and guiding treatment pathways, as well as treatment research and clinical audit.


Asunto(s)
Pie Equinovaro/diagnóstico por imagen , Pie Equinovaro/fisiopatología , Pierna/diagnóstico por imagen , Imagen por Resonancia Magnética , Adolescente , Adulto , Niño , Pie Equinovaro/clasificación , Femenino , Humanos , Pierna/fisiopatología , Masculino , Radiografía , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA