Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Elife ; 92020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33169670

RESUMEN

Contrary to dogma, evolutionarily young and dynamic genes can encode essential functions. We find that evolutionarily dynamic ZAD-ZNF genes, which encode the most abundant class of insect transcription factors, are more likely to encode essential functions in Drosophila melanogaster than ancient, conserved ZAD-ZNF genes. We focus on the Nicknack ZAD-ZNF gene, which is evolutionarily young, poorly retained in Drosophila species, and evolves under strong positive selection. Yet we find that it is necessary for larval development in D. melanogaster. We show that Nicknack encodes a heterochromatin-localizing protein like its paralog Oddjob, also an evolutionarily dynamic yet essential ZAD-ZNF gene. We find that the divergent D. simulans Nicknack protein can still localize to D. melanogaster heterochromatin and rescue viability of female but not male Nicknack-null D. melanogaster. Our findings suggest that innovation for rapidly changing heterochromatin functions might generally explain the essentiality of many evolutionarily dynamic ZAD-ZNF genes in insects.


Asunto(s)
Proteínas de Drosophila/fisiología , Genes de Insecto/fisiología , Heterocromatina/fisiología , Factores de Transcripción/fisiología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Femenino , Genes de Insecto/genética , Heterocromatina/metabolismo , Masculino , Filogenia , Factores de Transcripción/genética
2.
Mol Biol Evol ; 36(10): 2212-2226, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31187122

RESUMEN

New genes are of recent origin and only present in a subset of species in a phylogeny. Accumulated evidence suggests that new genes, like old genes that are conserved across species, can also take on important functions and be essential for the survival and reproductive success of organisms. Although there are detailed analyses of the mechanisms underlying new genes' gaining fertility functions, how new genes rapidly become essential for viability remains unclear. We focused on a young retro-duplicated gene (CG7804, which we named Cocoon) in Drosophila that originated between 4 and 10 Ma. We found that, unlike its evolutionarily conserved parental gene, Cocoon has evolved under positive selection and accumulated many amino acid differences at functional sites from the parental gene. Despite its young age, Cocoon is essential for the survival of Drosophila melanogaster at multiple developmental stages, including the critical embryonic stage, and its expression is essential in different tissues from those of its parental gene. Functional genomic analyses found that Cocoon acquired unique DNA-binding sites and has a contrasting effect on gene expression to that of its parental gene. Importantly, Cocoon binding predominantly locates at genes that have other essential functions and/or have multiple gene-gene interactions, suggesting that Cocoon acquired novel essential function to survival through forming interactions that have large impacts on the gene interaction network. Our study is an important step toward deciphering the evolutionary trajectory by which new genes functionally diverge from parental genes and become essential.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Duplicación de Gen , Genes Esenciales , Sustitución de Aminoácidos , Animales , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes
3.
Genes Dev ; 33(1-2): 103-115, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578303

RESUMEN

Repair of DNA double-strand breaks (DSBs) must be orchestrated properly within diverse chromatin domains in order to maintain genetic stability. Euchromatin and heterochromatin domains display major differences in histone modifications, biophysical properties, and spatiotemporal dynamics of DSB repair. However, it is unclear whether differential histone-modifying activities are required for DSB repair in these distinct domains. We showed previously that the Drosophila melanogaster KDM4A (dKDM4A) histone demethylase is required for heterochromatic DSB mobility. Here we used locus-specific DSB induction in Drosophila animal tissues and cultured cells to more deeply interrogate the impact of dKDM4A on chromatin changes, temporal progression, and pathway utilization during DSB repair. We found that dKDM4A promotes the demethylation of heterochromatin-associated histone marks at DSBs in heterochromatin but not euchromatin. Most importantly, we demonstrate that dKDM4A is required to complete DSB repair in a timely manner and regulate the relative utilization of homologous recombination (HR) and nonhomologous end-joining (NHEJ) repair pathways but exclusively for heterochromatic DSBs. We conclude that the temporal kinetics and pathway utilization during heterochromatic DSB repair depend on dKDM4A-dependent demethylation of heterochromatic histone marks. Thus, distinct pre-existing chromatin states require specialized epigenetic alterations to ensure proper DSB repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Epigénesis Genética , Heterocromatina/metabolismo , Histona Demetilasas/metabolismo , Animales , Células Cultivadas , Reparación del ADN por Unión de Extremidades/genética , Desmetilación , Heterocromatina/genética , Histonas/metabolismo , Recombinación Homóloga/genética
4.
Annu Rev Cell Dev Biol ; 34: 265-288, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30044650

RESUMEN

Constitutive heterochromatin is a major component of the eukaryotic nucleus and is essential for the maintenance of genome stability. Highly concentrated at pericentromeric and telomeric domains, heterochromatin is riddled with repetitive sequences and has evolved specific ways to compartmentalize, silence, and repair repeats. The delicate balance between heterochromatin epigenetic maintenance and cellular processes such as mitosis and DNA repair and replication reveals a highly dynamic and plastic chromatin domain that can be perturbed by multiple mechanisms, with far-reaching consequences for genome integrity. Indeed, heterochromatin dysfunction provokes genetic turmoil by inducing aberrant repeat repair, chromosome segregation errors, transposon activation, and replication stress and is strongly implicated in aging and tumorigenesis. Here, we summarize the general principles of heterochromatin structure and function, discuss the importance of its maintenance for genome integrity, and propose that more comprehensive analyses of heterochromatin roles in tumorigenesis will be integral to future innovations in cancer treatment.


Asunto(s)
Reparación del ADN/genética , Inestabilidad Genómica , Heterocromatina/genética , Mitosis/genética , Centrómero/genética , Segregación Cromosómica/genética , Genoma/genética , Histonas/genética , Humanos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Telómero/genética
5.
Dev Cell ; 42(2): 156-169.e5, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28743002

RESUMEN

Eukaryotic genomes are broadly divided between gene-rich euchromatin and the highly repetitive heterochromatin domain, which is enriched for proteins critical for genome stability and transcriptional silencing. This study shows that Drosophila KDM4A (dKDM4A), previously characterized as a euchromatic histone H3 K36 demethylase and transcriptional regulator, predominantly localizes to heterochromatin and regulates heterochromatin position-effect variegation (PEV), organization of repetitive DNAs, and DNA repair. We demonstrate that dKDM4A demethylase activity is dispensable for PEV. In contrast, dKDM4A enzymatic activity is required to relocate heterochromatic double-strand breaks outside the domain, as well as for organismal survival when DNA repair is compromised. Finally, DNA damage triggers dKDM4A-dependent changes in the levels of H3K56me3, suggesting that dKDM4A demethylates this heterochromatic mark to facilitate repair. We conclude that dKDM4A, in addition to its previously characterized role in euchromatin, utilizes both enzymatic and structural mechanisms to regulate heterochromatin organization and functions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Heterocromatina/metabolismo , Histona Demetilasas/metabolismo , Animales , Biocatálisis , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Efectos de la Posición Cromosómica/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Fertilidad/genética , Regulación de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Lisina/metabolismo , Metilación , Mutación/genética , Dominios Proteicos , Transcripción Genética
6.
Elife ; 52016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27514026

RESUMEN

Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.


Asunto(s)
Proteínas Cromosómicas no Histona/análisis , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Heterocromatina/química , Animales , Homólogo de la Proteína Chromobox 5 , Regulación de la Expresión Génica , Análisis Espacio-Temporal
7.
Mol Cell ; 45(2): 263-9, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22209075

RESUMEN

Centromeres are essential chromosomal regions required for kinetochore assembly and chromosome segregation. The composition and organization of centromeric nucleosomes containing the essential histone H3 variant CENP-A (CID in Drosophila) is a fundamental, unresolved issue. Using immunoprecipitation of CID mononucleosomes and cysteine crosslinking, we demonstrate that centromeric nucleosomes contain CID dimers in vivo. Furthermore, CID dimerization and centromeric targeting require a residue implicated in formation of the four-helix bundle, which mediates intranucleosomal H3 dimerization and nucleosome integrity. Taken together, our findings suggest that CID nucleosomes are octameric in vivo and that CID dimerization is essential for correct centromere assembly.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Histonas/metabolismo , Nucleosomas/metabolismo , Animales , Centrómero/química , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Dimerización , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Histonas/química , Histonas/genética , Modelos Genéticos , Modelos Moleculares , Nucleosomas/química , Ultracentrifugación/métodos
8.
Cell ; 144(5): 732-44, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21353298

RESUMEN

Double-strand breaks (DSBs) in heterochromatic repetitive DNAs pose significant threats to genome integrity, but information about how such lesions are processed and repaired is sparse. We observe dramatic expansion and dynamic protrusions of the heterochromatin domain in response to ionizing radiation (IR) in Drosophila cells. We also find that heterochromatic DSBs are repaired by homologous recombination (HR) but with striking differences from euchromatin. Proteins involved in early HR events (resection) are rapidly recruited to DSBs within heterochromatin. In contrast, Rad51, which mediates strand invasion, only associates with DSBs that relocalize outside of the domain. Heterochromatin expansion and relocalization of foci require checkpoint and resection proteins. Finally, the Smc5/6 complex is enriched in heterochromatin and is required to exclude Rad51 from the domain and prevent abnormal recombination. We propose that the spatial and temporal control of DSB repair in heterochromatin safeguards genome stability by preventing aberrant exchanges between repeats.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Proteínas de Drosophila/metabolismo , Recombinación Genética , Animales , Proteínas de Ciclo Celular/metabolismo , Homólogo de la Proteína Chromobox 5 , Roturas del ADN de Doble Cadena , Drosophila melanogaster/metabolismo , Heterocromatina , Recombinasa Rad51/metabolismo
9.
Mol Cell ; 27(3): 449-61, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17658285

RESUMEN

The fission yeast centromeric repeats are transcribed and ultimately processed into small interfering RNAs (siRNAs) that are required for heterochromatin formation. siRNA generation requires dsRNA synthesis by the RNA-directed RNA polymerase complex (RDRC) and processing by the Dicer ribonuclease. Here we show that Dcr1, the fission yeast Dicer, is physically associated with RDRC. Dcr1 generates siRNAs in an ATP-dependent manner that requires its conserved N-terminal helicase domain. Furthermore, C-terminal truncations of Dcr1 that abolish its interaction with RDRC, but can generate siRNA in vitro, abolish siRNA generation and heterochromatic gene silencing in vivo. Finally, reconstitution experiments show that the association of Dcr1 with RDRC strongly stimulates the dsRNA synthesis activity of RDRC. Our results suggest that heterochromatic dsRNA synthesis and siRNA generation are physically coupled processes. This coupling has implications for cis-restriction of siRNA-mediated heterochromatin assembly and for mechanisms that give rise to siRNA strand polarity.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Interferencia de ARN/fisiología , ARN Bicatenario/fisiología , ARN Interferente Pequeño/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Centrómero/metabolismo , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Heterocromatina/metabolismo , Datos de Secuencia Molecular , Mutación , Conformación Proteica , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia de Aminoácido
10.
Cell ; 119(6): 789-802, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15607976

RESUMEN

RNAi-mediated heterochromatin assembly in fission yeast requires the RNA-induced transcriptional silencing (RITS) complex and a putative RNA-directed RNA polymerase (Rdp1). Here we show that Rdp1 is associated with two conserved proteins, Hrr1, an RNA helicase, and Cid12, a member of the polyA polymerase family, in a complex that has RNA-directed RNA polymerase activity (RDRC, RNA-directed RNA polymerase complex). RDRC physically interacts with RITS in a manner that requires the Dicer ribonuclease (Dcr1) and the Clr4 histone methyltransferase. Moreover, both complexes are localized to the nucleus and associate with noncoding centromeric RNAs in a Dcr1-dependent manner. In cells lacking Rdp1, Hrr1, or Cid12, RITS complexes are devoid of siRNAs and fail to localize to centromeric DNA repeats to initiate heterochromatin assembly. These findings reveal a physical and functional link between Rdp1 and RITS and suggest that noncoding RNAs provide a platform for siRNA-dependent localization of RNAi complexes to specific chromosome regions.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Centrómero/metabolismo , Heterocromatina/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Centrómero/genética , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina , Metiltransferasas/genética , Metiltransferasas/metabolismo , Unión Proteica , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Complejo Silenciador Inducido por ARN/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA