RESUMEN
BACKGROUND: Post-intensive care syndrome (PICS), defined as physical, cognitive, and mental-health symptoms persisting long after intensive-care-unit (ICU) discharge, is increasingly recognised as a healthcare priority. Data on screening for PICS are sparse. Our objective here was to describe post-ICU screening in France, with special attention to visit availability and evaluations done during visits. METHODS: We conducted an online multicentre survey by emailing an anonymous 43-item questionnaire to French ICUs. For each ICU, a single survey was sent to either the head or the intensivist in charge of follow-up visits. RESULTS: Of 252 ICUs invited to participate, 161 (63.9%) returned the completed survey. Among them, 46 (28.6%) offered follow-up visits. Usually, a single visit led by an intensivist was scheduled 3 to 6 months after ICU discharge. Approximately 50 patients/year/ICU, that is, about 5% of admitted patients, attended post-ICU visits. The main criteria used to select patients for follow-up were ICU stay and/or invasive mechanical ventilation duration longer than 48 h, cardiac arrest, septic shock, and acute respiratory distress syndrome. Among ICUs offering visits, 80% used validated instruments to screen for PICS. Of the 115 ICUs not offering follow-up, 50 (43.5%) indicated an intention to start follow-up within the next year. The main barriers to offering follow-up were lack of available staff and equipment or not viewing PICS screening as a priority. Half the ICUs offering visits worked with an established network of post-ICU care professionals, and another 17% were setting up such a network. Obstacles to network creation were lack of interest among healthcare professionals and lack of specific training in PICS. CONCLUSION: Only a small minority of ICU survivors received follow-up designed to detect PICS. Less than a third of ICUs offered follow-up visits but nearly another third planned to set up such visits within the next year. Recommendations issued by French health authorities in 2023 can be expected to improve the availability and standardisation of post-ICU follow-up.
RESUMEN
During acute respiratory distress syndrome (ARDS), the increase in pulmonary vascular permeability and lung water induced by pulmonary inflammation may be related to altered lung compliance. A better understanding of the interactions between respiratory mechanics variables and lung water or capillary permeability would allow a more personalized monitoring and adaptation of therapies for patients with ARDS. Therefore, our main objective was to investigate the relationship between extravascular lung water (EVLW) and/or pulmonary vascular permeability index (PVPI) and respiratory mechanic variables in patients with COVID-19-induced ARDS. This is a retrospective observational study from prospectively collected data in a cohort of 107 critically ill patients with COVID-19-induced ARDS from March 2020 to May 2021. We analyzed relationships between variables using repeated measurements correlations. We found no clinically relevant correlations between EVLW and the respiratory mechanics variables (driving pressure (correlation coefficient [CI 95%]: 0.017 [-0.064; 0.098]), plateau pressure (0.123 [0.043; 0.202]), respiratory system compliance (-0.003 [-0.084; 0.079]) or positive end-expiratory pressure (0.203 [0.126; 0.278])). Similarly, there were no relevant correlations between PVPI and these same respiratory mechanics variables (0.051 [-0.131; 0.035], 0.059 [-0.022; 0.140], 0.072 [-0.090; 0.153] and 0.22 [0.141; 0.293], respectively). In a cohort of patients with COVID-19-induced ARDS, EVLW and PVPI values are independent from respiratory system compliance and driving pressure. Optimal monitoring of these patients should combine both respiratory and TPTD variables.
RESUMEN
Patients with severe lung injury usually have a high respiratory drive, resulting in intense inspiratory effort that may even worsen lung damage by several mechanisms gathered under the name "patient-self inflicted lung injury" (P-SILI). Even though no clinical study has yet demonstrated that a ventilatory strategy to limit the risk of P-SILI can improve the outcome, the concept of P-SILI relies on sound physiological reasoning, an accumulation of clinical observations and some consistent experimental data. In this review, we detail the main pathophysiological mechanisms by which the patient's respiratory effort could become deleterious: excessive transpulmonary pressure resulting in over-distension; inhomogeneous distribution of transpulmonary pressure variations across the lung leading to cyclic opening/closing of nondependent regions and pendelluft phenomenon; increase in the transvascular pressure favoring the aggravation of pulmonary edema. We also describe potentially harmful patient-ventilator interactions. Finally, we discuss in a practical way how to detect in the clinical setting situations at risk for P-SILI and to what extent this recognition can help personalize the treatment strategy.