RESUMEN
Aggregation of microtubule-associated protein tau (MAPT/tau) into conformationally distinct fibrils underpins neurodegenerative tauopathies. Fluorescent probes (fluoroprobes), such as thioflavin T (ThT), have been essential tools for studying tau aggregation; however, most of them do not discriminate between amyloid fibril conformations (polymorphs). This gap is due, in part, to a lack of high-throughput methods for screening large, diverse chemical collections. Here, we leverage advances in protein adaptive differential scanning fluorimetry (paDSF) to screen the Aurora collection of 300+ fluorescent dyes against multiple synthetic tau fibril polymorphs. This screen, coupled with orthogonal secondary assays, revealed pan-fibril binding chemotypes, as well as fluoroprobes selective for subsets of fibrils. One fluoroprobe recognized tau pathology in ex vivo brain slices from Alzheimer's disease patients. We propose that these scaffolds represent entry points for development of selective fibril ligands and, more broadly, that high throughput, fluorescence-based dye screening is a platform for their discovery.
RESUMEN
Both wild-type and mutant tau proteins can misfold into prions and self-propagate in the central nervous system of animals and people. To extend the work of others, we investigated the molecular basis of tau prion-mediated neurodegeneration in transgenic (Tg) rats expressing mutant human tau (P301S); this line of Tg rats is denoted Tg12099. We used the rat Prnp promoter to drive the overexpression of mutant tau (P301S) in the human 0N4R isoform. In Tg12099(+/+) rats homozygous for the transgene, ubiquitous expression of mutant human tau resulted in the progressive accumulation of phosphorylated tau inclusions, including silver-positive tangles in the frontal cortices and limbic system. Signs of central nervous system dysfunction were found in terminal Tg12099(+/+) rats exhibiting severe neurodegeneration and profound atrophy of the amygdala and piriform cortex. The greatest increases in tau prion activity were found in the corticolimbic structures. In contrast to the homozygous Tg12099(+/+) rats, we found lower levels of mutant tau in the hemizygous rats, resulting in few neuropathologic changes up to 2 years of age. Notably, these hemizygous rats could be infected by intracerebral inoculation with recombinant tau fibrils or precipitated tau prions from the brain homogenates of sick, aged homozygous Tg12099(+/+) rats. Our studies argue that the regional propagation of tau prions and neurodegeneration in the Tg12099 rats resembles that found in human primary tauopathies. These findings seem likely to advance our understanding of human tauopathies and may lead to effective therapeutics for Alzheimer's disease and other tau prion disorders.
Asunto(s)
Encéfalo , Ratas Transgénicas , Proteínas tau , Animales , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Ratas , Encéfalo/patología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Priones/metabolismo , Priones/genética , Tauopatías/patología , Tauopatías/metabolismo , Tauopatías/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , MutaciónRESUMEN
This Viewpoint describes the evidence for iatrogenic disease based on amyloid-ß prions and the possibility that Alzheimer disease has an iatrogenic form wherein amyloid ß and tau behave as prions that transmit the disease.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/metabolismo , Priones/metabolismo , Enfermedades por Prión/metabolismo , AnimalesRESUMEN
Insoluble amyloids rich in cross-ß fibrils are observed in a number of neurodegenerative diseases. Depending on the clinicopathology, the amyloids can adopt distinct supramolecular assemblies, termed conformational strains. However, rapid methods to study amyloids in a conformationally specific manner are lacking. We introduce a novel computational method for de novo design of peptides that tile the surface of α-synuclein fibrils in a conformationally specific manner. Our method begins by identifying surfaces that are unique to the conformational strain of interest, which becomes a "target backbone" for the design of a peptide binder. Next, we interrogate structures in the PDB with high geometric complementarity to the target. Then, we identify secondary structural motifs that interact with this target backbone in a favorable, highly occurring geometry. This method produces monomeric helical motifs with a favorable geometry for interaction with the strands of the underlying amyloid. Each motif is then symmetrically replicated to form a monolayer that tiles the amyloid surface. Finally, amino acid sequences of the peptide binders are computed to provide a sequence with high geometric and physicochemical complementarity to the target amyloid. This method was applied to a conformational strain of α-synuclein fibrils, resulting in a peptide with high specificity for the target relative to other amyloids formed by α-synuclein, tau, or Aß40. This designed peptide also markedly slowed the formation of α-synuclein amyloids. Overall, this method offers a new tool for examining conformational strains of amyloid proteins.
RESUMEN
Down syndrome (DS) is a common genetic condition caused by trisomy of chromosome 21. Among their complex clinical features, including musculoskeletal, neurological, and cardiovascular disabilities, individuals with DS have an increased risk of developing progressive dementia and early-onset Alzheimer's disease (AD). This dementia is attributed to the increased gene dosage of the amyloid-ß (Aß) precursor protein gene, the formation of self-propagating Aß and tau prion conformers, and the deposition of neurotoxic Aß plaques and tau neurofibrillary tangles. Tau amyloid fibrils have previously been established to adopt many distinct conformations across different neurodegenerative conditions. Here, we report the characterization of brain samples from four DS cases spanning 36-63 years of age by spectral confocal imaging with conformation-specific dyes and cryo-electron microscopy (cryo-EM) to determine structures of isolated tau fibrils. High-resolution structures revealed paired helical filament (PHF) and straight filament (SF) conformations of tau that were identical to those determined from AD cases. The PHFs and SFs are made of two C-shaped protofilaments, each containing a cross-ß/ß-helix motif. Similar to filaments from AD cases, most filaments from the DS cases adopted the PHF form, while a minority (approximately 20%) formed SFs. Samples from the youngest individual with no documented dementia had sparse tau deposits. To isolate tau for cryo-EM from this challenging sample we used a novel affinity-grid method involving a graphene oxide surface derivatized with anti-tau antibodies. This method improved isolation and revealed that primarily tau PHFs and a minor population of chronic traumatic encephalopathy type II-like filaments were present in this youngest case. These findings expand the similarities between AD and DS to the molecular level, providing insight into their related pathologies and the potential for targeting common tau filament folds by small-molecule therapeutics and diagnostics.
Asunto(s)
Enfermedad de Alzheimer , Microscopía por Crioelectrón , Síndrome de Down , Proteínas tau , Humanos , Síndrome de Down/patología , Síndrome de Down/metabolismo , Proteínas tau/metabolismo , Proteínas tau/ultraestructura , Microscopía por Crioelectrón/métodos , Persona de Mediana Edad , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Femenino , Adulto , Masculino , Ovillos Neurofibrilares/patología , Ovillos Neurofibrilares/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/ultraestructuraRESUMEN
Down syndrome (DS) is a common genetic condition caused by trisomy of chromosome 21. Among the complex clinical features including musculoskeletal, neurological and cardiovascular disabilities, individuals with DS have an increased risk of developing progressive dementia and early onset Alzheimer's Disease (AD). This is attributed to the increased gene dosage of amyloid-ß (Aß) precursor protein gene, the formation of self-propagating Aß and tau prion conformers, and the deposition of neurotoxic Aß plaques and tau neurofibrillary tangles. Tau amyloid fibrils have previously been established to adopt many distinct conformations across different neurodegenerative conditions. Here we report the characterization of brain samples from four DS cases spanning 36 to 63 years of age by spectral confocal imaging with conformation-specific dyes and cryo-electron microscopy (cryo-EM) to determine structures of isolated tau fibrils. High-resolution structures reveal paired helical filament (PHF) and straight filament (SF) conformations of tau that are identical to those determined from AD. The PHFs and SFs are made of two C-shaped protofilaments with a cross-ß/ß-helix motif. Similar to filaments from AD cases, most filaments from the DS cases adopted the PHF form, while a minority (~20%) formed SFs. Samples from the youngest individual with no documented dementia had sparse tau deposits. To isolate tau for cryo-EM from this challenging sample we used a novel affinity-grid method involving a graphene-oxide surface derivatized with anti-tau antibodies. This improved isolation and revealed primarily tau PHFs and a minor population of chronic traumatic encephalopathy type II-like filaments were present in this youngest case. These findings expand the similarities between AD and DS to the molecular level, providing insight into their related pathologies and the potential for targeting common tau filament folds by small-molecule therapeutics and diagnostics.
RESUMEN
Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.
Asunto(s)
Encéfalo , Interferón Tipo I , Microglía , Animales , Ratones , Interferón Tipo I/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Pez Cebra , Encéfalo/citología , Encéfalo/crecimiento & desarrolloRESUMEN
Insoluble amyloids rich in cross-ß fibrils are observed in a number of neurodegenerative diseases. Depending on the clinicopathology, the amyloids can adopt distinct supramolecular assemblies, termed conformational strains. However, rapid methods to study amyloid in a conformationally specific manner are lacking. We introduce a novel computational method for de novo design of peptides that tile the surface of α-synuclein fibrils in a conformationally specific manner. Our method begins by identifying surfaces that are unique to the conformational strain of interest, which becomes a "target backbone" for the design of a peptide binder. Next, we interrogate structures in the PDB database with high geometric complementarity to the target. Then, we identify secondary structural motifs that interact with this target backbone in a favorable, highly occurring geometry. This method produces monomeric helical motifs with a favorable geometry for interaction with the strands of the underlying amyloid. Each motif is then symmetrically replicated to form a monolayer that tiles the amyloid surface. Finally, amino acid sequences of the peptide binders are computed to provide a sequence with high geometric and physicochemical complementarity to the target amyloid. This method was applied to a conformational strain of α-synuclein fibrils, resulting in a peptide with high specificity for the target relative to other amyloids formed by α-synuclein, tau, or Aß40. This designed peptide also markedly slowed the formation of α-synuclein amyloids. Overall, this method offers a new tool for examining conformational strains of amyloid proteins.
RESUMEN
Numerous Aß proteoforms, identified in the human brain, possess differential neurotoxic and aggregation propensities. These proteoforms contribute in unknown ways to the conformations and resultant pathogenicity of oligomers, protofibrils, and fibrils in Alzheimer's disease (AD) manifestation owing to the lack of molecular-level specificity to the exact chemical composition of underlying protein products with widespread interrogating techniques, like immunoassays. We evaluated Aß proteoform flux using quantitative top-down mass spectrometry (TDMS) in a well-studied 5xFAD mouse model of age-dependent Aß-amyloidosis. Though the brain-derived Aß proteoform landscape is largely occupied by Aß1-42, 25 different forms of Aß with differential solubility were identified. These proteoforms fall into three natural groups defined by hierarchical clustering of expression levels in the context of mouse age and proteoform solubility, with each group sharing physiochemical properties associated with either N/C-terminal truncations or both. Overall, the TDMS workflow outlined may hold tremendous potential for investigating proteoform-level relationships between insoluble fibrils and soluble Aß, including low-molecular-weight oligomers hypothesized to serve as the key drivers of neurotoxicity. Similarly, the workflow may also help to validate the utility of AD-relevant animal models to recapitulate amyloidosis mechanisms or possibly explain disconnects observed in therapeutic efficacy in animal models vs humans.
Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Ratones , Humanos , Animales , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Espectrometría de MasasRESUMEN
A hallmark of age-associated neurodegenerative diseases is the aggregation of proteins. Aggregation of the protein tau defines tauopathies, which include Alzheimer's disease and frontotemporal dementia. Specific neuronal subtypes are selectively vulnerable to the accumulation of tau aggregates, and subsequent dysfunction and death. The mechanisms underlying cell type-selective vulnerability are unknown. To systematically uncover the cellular factors controlling the accumulation of tau aggregates in human neurons, we conducted a genome-wide CRISPRi-based modifier screen in iPSC-derived neurons. The screen uncovered expected pathways, including autophagy, but also unexpected pathways including UFMylation and GPI anchor synthesis, that control tau oligomer levels. We identify the E3 ubiquitin ligase CUL5 as a tau interactor and potent modifier of tau levels. In addition, disruption of mitochondrial function increases tau oligomer levels and promotes proteasomal misprocessing of tau. These results reveal new principles of tau proteostasis in human neurons and pinpoint potential therapeutic targets for tauopathies.
RESUMEN
Mutations in a microglia-associated gene TREM2 increase the risk of Alzheimer's disease. Currently, structural and functional studies of TREM2 mainly rely on recombinant TREM2 proteins expressed from mammalian cells. However, using this method, it is difficult to achieve site-specific labeling. Here, we present the total chemical synthesis of the 116 amino acid TREM2 ectodomain. Rigorous structural analysis ensured correct structural fold after refolding. Treating microglial cells with refolded synthetic TREM2 enhanced microglial phagocytosis, proliferation, and survival. We also prepared TREM2 constructs with defined glycosylation patterns and found that glycosylation at N79 is critical to the thermal stability of TREM2. This method will provide access to TREM2 constructs with site-specific labeling, such as fluorescent labeling, reactive chemical handles, and enrichment handles, to further advance our understanding of TREM2 in Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Glicosilación , Fagocitosis , Microglía/metabolismo , Mutación , Mamíferos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismoRESUMEN
The amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC) of Guam is an endemic neurodegenerative disease that features widespread tau tangles, occasional α-synuclein Lewy bodies, and sparse ß-amyloid (Aß) plaques distributed in the central nervous system. Extensive studies of genetic or environmental factors have failed to identify a cause of ALS-PDC. Building on prior work describing the detection of tau and Aß prions in Alzheimer's disease (AD) and Down syndrome brains, we investigated ALS-PDC brain samples for the presence of prions. We obtained postmortem frozen brain tissue from 26 donors from Guam with ALS-PDC or no neurological impairment and 71 non-Guamanian donors with AD or no neurological impairment. We employed cellular bioassays to detect the prion conformers of tau, α-synuclein, and Aß proteins in brain extracts. In ALS-PDC brain samples, we detected high titers of tau and Aß prions, but we did not detect α-synuclein prions in either cohort. The specific activity of tau and Aß prions was increased in Guam ALS-PDC compared with sporadic AD. Applying partial least squares regression to all biochemical and prion infectivity measurements, we demonstrated that the ALS-PDC cohort has a unique molecular signature distinguishable from AD. Our findings argue that Guam ALS-PDC is a distinct double-prion disorder featuring both tau and Aß prions.
Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia , Enfermedades Neurodegenerativas , Trastornos Parkinsonianos , Enfermedades por Prión , Priones , Humanos , alfa-Sinucleína , Esclerosis Amiotrófica Lateral/metabolismo , Demencia/metabolismo , Trastornos Parkinsonianos/metabolismo , Proteínas tau/metabolismoRESUMEN
In neurodegenerative diseases, proteins fold into amyloid structures with distinct conformations (strains) that are characteristic of different diseases. However, there is a need to rapidly identify amyloid conformations in situ. Here, we use machine learning on the full information available in fluorescent excitation/emission spectra of amyloid-binding dyes to identify six distinct different conformational strains in vitro, as well as amyloid-ß (Aß) deposits in different transgenic mouse models. Our EMBER (excitation multiplexed bright emission recording) imaging method rapidly identifies conformational differences in Aß and tau deposits from Down syndrome, sporadic and familial Alzheimer's disease human brain slices. EMBER has in situ identified distinct conformational strains of tau inclusions in astrocytes, oligodendrocytes, and neurons from Pick's disease. In future studies, EMBER should enable high-throughput measurements of the fidelity of strain transmission in cellular and animal neurodegenerative diseases models, time course of amyloid strain propagation, and identification of pathogenic versus benign strains.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Pick , Ratones , Animales , Humanos , Microscopía , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Pick/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Proteínas tau/metabolismo , Placa Amiloide/metabolismoRESUMEN
In neurodegenerative diseases proteins fold into amyloid structures with distinct conformations (strains) that are characteristic of different diseases. However, there is a need to rapidly identify amyloid conformations in situ . Here we use machine learning on the full information available in fluorescent excitation/emission spectra of amyloid binding dyes to identify six distinct different conformational strains in vitro , as well as Aß deposits in different transgenic mouse models. Our EMBER (excitation multiplexed bright emission recording) imaging method rapidly identifies conformational differences in Aß and tau deposits from Down syndrome, sporadic and familial Alzheimer's disease human brain slices. EMBER has in situ identified distinct conformational strains of tau inclusions in astrocytes, oligodendrocytes, and neurons from Pick's disease. In future studies, EMBER should enable high-throughput measurements of the fidelity of strain transmission in cellular and animal neurodegenerative diseases models, time course of amyloid strain propagation, and identification of pathogenic versus benign strains. Significance: In neurodegenerative diseases proteins fold into amyloid structures with distinct conformations (strains) that are characteristic of different diseases. There is a need to rapidly identify these amyloid conformations in situ . Here we use machine learning on the full information available in fluorescent excitation/emission spectra of amyloid binding dyes to identify six distinct different conformational strains in vitro , as well as Aß deposits in different transgenic mouse models. Our imaging method rapidly identifies conformational differences in Aß and tau deposits from Down syndrome, sporadic and familial Alzheimer's disease human brain slices. We also identified distinct conformational strains of tau inclusions in astrocytes, oligodendrocytes, and neurons from Pick's disease. These findings will facilitate the identification of pathogenic protein aggregates to guide research and treatment of protein misfolding diseases.
RESUMEN
Microglia are central to pathogenesis in many neurological conditions. Drugs targeting colony-stimulating factor-1 receptor (CSF1R) to block microglial proliferation in preclinical disease models have shown mixed outcomes, thus the therapeutic potential of this approach remains unclear. Here, we show that CSF1R inhibitors given by multiple dosing paradigms in the Tg2541 tauopathy mouse model cause a sex-independent reduction in pathogenic tau and reversion of non-microglial gene expression patterns toward a normal wild type signature. Despite greater drug exposure in male mice, only female mice have functional rescue and extended survival. A dose-dependent upregulation of immediate early genes and neurotransmitter dysregulation are observed in the brains of male mice only, indicating that excitotoxicity may preclude functional benefits. Drug-resilient microglia in male mice exhibit morphological and gene expression patterns consistent with increased neuroinflammatory signaling, suggesting a mechanistic basis for sex-specific excitotoxicity. Complete microglial ablation is neither required nor desirable for neuroprotection and therapeutics targeting microglia must consider sex-dependent effects.
Asunto(s)
Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Tauopatías , Animales , Femenino , Masculino , Ratones , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Microglía/metabolismo , Fenotipo , Receptores del Factor Estimulante de Colonias/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Tauopatías/metabolismoRESUMEN
Studies show that patients with Alzheimer's disease (AD) have both Aß and tau prions, and thus, AD is a double-prion disease. AD patients with the greatest longevity exhibited low levels of both Aß and tau prions; tau prions were nearly absent in the brains of almost half of the patients who lived beyond 80 years of age. Using cellular bioassays for prions in postmortem samples, we found that both Aß and tau proteins misfold into prions leading to AD, which is either a sporadic or familial dementing disorder. Although AD is transmissible experimentally, there is no evidence that AD is either communicable or contagious. Since the progression of AD correlates poorly with insoluble Aß in the central nervous system (CNS), it was difficult to distinguish between inert amyloids and Aß prions. To measure the progression of AD, we devised rapid bioassays to measure the abundance of isoform-specific Aß prions in the brains of transgenic (Tg) mice and in postmortem human CNS samples from AD victims and people who died of other neurodegenerative diseases (NDs). We found significant correlations between the longevity of individuals with AD, sex, and genetic background, despite the fact that all postmortem brain tissue had essentially the same confirmed neuropathology.Although brains from all AD patients had measurable levels of Aß prions at death, the oldest individuals had lower Aß prion levels than the younger ones. Additionally, the long-lived individuals had low tau prion levels that correlated with the extent of phosphorylated tau (p-tau). Unexpectedly, a longevity-dependent decrease in tau prions was found in spite of increasing amounts of total insoluble tau. When corrected for the abundance of insoluble tau, the tau prion levels decreased exponentially with respect to the age at death with a half-time of approximately one decade, and this correlated with the abundance of phosphorylated tau.Even though our findings with tau prions were not unexpected, they were counterintuitive; thus, tau phosphorylation and tau prion activity decreased exponentially with longevity in patients with AD ranging from ages 37 to 99 years. Our findings demonstrated an inverse correlation between longevity in AD patients and the abundance of neurotoxic tau prions. Moreover, our discovery may have profound implications for the selection of phenotypically distinct patient populations and the development of diagnostics and effective therapeutics for AD.
Asunto(s)
Enfermedad de Alzheimer , Priones , Humanos , Animales , Ratones , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Ratones TransgénicosRESUMEN
Down syndrome (DS) is caused by the triplication of chromosome 21 and is the most common chromosomal disorder in humans. Those individuals with DS who live beyond age 40 y develop a progressive dementia that is similar to Alzheimer's disease (AD). Both DS and AD brains exhibit numerous extracellular amyloid plaques composed of Aß and intracellular neurofibrillary tangles composed of tau. Since AD is a double-prion disorder, we asked if both Aß and tau prions feature in DS. Frozen brains from people with DS, familial AD (fAD), sporadic AD (sAD), and age-matched controls were procured from brain biorepositories. We selectively precipitated Aß and tau prions from DS brain homogenates and measured the number of prions using cellular bioassays. In brain extracts from 28 deceased donors with DS, ranging in age from 19 to 65 y, we found nearly all DS brains had readily measurable levels of Aß and tau prions. In a cross-sectional analysis of DS donor age at death, we found that the levels of Aß and tau prions increased with age. In contrast to DS brains, the levels of Aß and tau prions in the brains of 37 fAD and sAD donors decreased as a function of age at death. Whether DS is an ideal model for assessing the efficacy of putative AD therapeutics remains to be determined.
Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Priones , Adulto , Humanos , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estudios Transversales , Síndrome de Down/patología , Priones/metabolismo , Proteínas tau/metabolismoRESUMEN
Activation of microglia is a prominent pathological feature in tauopathies, including Alzheimer's disease. How microglia activation contributes to tau toxicity remains largely unknown. Here we show that nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, activated by tau, drives microglial-mediated tau propagation and toxicity. Constitutive activation of microglial NF-κB exacerbated, while inactivation diminished, tau seeding and spreading in young PS19 mice. Inhibition of NF-κB activation enhanced the retention while reduced the release of internalized pathogenic tau fibrils from primary microglia and rescued microglial autophagy deficits. Inhibition of microglial NF-κB in aged PS19 mice rescued tau-mediated learning and memory deficits, restored overall transcriptomic changes while increasing neuronal tau inclusions. Single cell RNA-seq revealed that tau-associated disease states in microglia were diminished by NF-κB inactivation and further transformed by constitutive NF-κB activation. Our study establishes a role for microglial NF-κB signaling in mediating tau spreading and toxicity in tauopathy.
Asunto(s)
Microglía , FN-kappa B , Tauopatías , Proteínas tau , Animales , Ratones , Microglía/metabolismo , Microglía/patología , FN-kappa B/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismoRESUMEN
The α-synuclein protein can adopt several different conformations that cause neurodegeneration. Different α-synuclein conformers cause at least three distinct α-synucleinopathies: multiple system atrophy (MSA), dementia with Lewy bodies (DLB), and Parkinson's disease (PD). In earlier studies, we transmitted MSA to transgenic (Tg) mice and cultured HEK cells both expressing mutant α-synuclein (A53T) but not to cells expressing α-synuclein (E46K). Now, we report that DLB is caused by a strain of α-synuclein prions that is distinct from MSA. Using cultured HEK cells expressing mutant α-synuclein (E46K), we found that DLB prions could be transmitted to these HEK cells. Our results argue that a third strain of α-synuclein prions likely causes PD, but further studies are needed to identify cells and/or Tg mice that express a mutant α-synuclein protein that is permissive for PD prion replication. Our findings suggest that other α-synuclein mutants should give further insights into α-synuclein prion replication, strain formation, and disease pathogenesis, all of which are likely required to discover effective drugs for the treatment of PD as well as the other α-synucleinopathies.
Asunto(s)
Demencia/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Atrofia de Múltiples Sistemas/metabolismo , Priones/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Línea Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/metabolismo , Sinucleinopatías/metabolismoRESUMEN
Triggering receptor expressed on myeloid cells 2 (TREM2) is a single-pass transmembrane receptor of the immunoglobulin superfamily that is secreted in a soluble (sTREM2) form. Mutations in TREM2 have been linked to increased risk of Alzheimer's disease (AD). A prominent neuropathological component of AD is deposition of the amyloid-ß (Aß) into plaques, particularly Aß40 and Aß42. While the membrane-bound form of TREM2 is known to facilitate uptake of Aß fibrils and the polarization of microglial processes toward amyloid plaques, the role of its soluble ectodomain, particularly in interactions with monomeric or fibrillar Aß, has been less clear. Our results demonstrate that sTREM2 does not bind to monomeric Aß40 and Aß42, even at a high micromolar concentration, while it does bind to fibrillar Aß42 and Aß40 with equal affinities (2.6 ± 0.3 µM and 2.3 ± 0.4 µM). Kinetic analysis shows that sTREM2 inhibits the secondary nucleation step in the fibrillization of Aß, while having little effect on the primary nucleation pathway. Furthermore, binding of sTREM2 to fibrils markedly enhanced uptake of fibrils into human microglial and neuroglioma derived cell lines. The disease-associated sTREM2 mutant, R47H, displayed little to no effect on fibril nucleation and binding, but it decreased uptake and functional responses markedly. We also probed the structure of the WT sTREM2-Aß fibril complex using integrative molecular modeling based primarily on the cross-linking mass spectrometry data. The model shows that sTREM2 binds fibrils along one face of the structure, leaving a second, mutation-sensitive site free to mediate cellular binding and uptake.