Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825637

RESUMEN

Voltage-dependent potassium (Kv) channels contribute to the excitability of nerves and muscles. In addition, Kv participates in several cell functions, including cell cycle progression and proliferation. Kv channel remodeling has been associated with neoplastic cell growth and cancer. Kv7 channels are expressed in blood vessels, and they participate in the maintenance of vascular tone and are implicated in myocyte proliferation. Although evidence links Kv7 remodeling to different types of cancer, its expression in vascular tumors has never been studied. Endothelium-derived vascular neoplasms range from indolent lesions to highly aggressive and metastasizing cancers. Here, we show that Kv7.1 and Kv7.5 are evenly distributed in tunicas as well as the endothelium of healthy veins and arteries. The layered structure of vessels is lost in vascular tumors. By studying eight vascular tumors with different origins and characteristics, we found that Kv7.1 and Kv7.5 expression was changed in vascular cancers. While both channels were generally downregulated, Kv7.5 expression was clearly correlated with neoplastic malignancy. The vascular tumors did not contract; therefore, the role of Kv7 channels is probably related to proliferation rather than controlling vascular tone. Our results identify vascular Kv7 channels as targets for cancer detection and anticancer therapies.


Asunto(s)
Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ1/metabolismo , Neoplasias Vasculares/metabolismo , Neoplasias Vasculares/patología , Animales , Arterias/metabolismo , Biomarcadores de Tumor/metabolismo , Humanos , Microscopía Confocal , Ratas
2.
Arch Esp Urol ; 73(3): 192-201, 2020 Apr.
Artículo en Español | MEDLINE | ID: mdl-32240109

RESUMEN

OBJECTIVE: To describe the initial experiencein our center on targeted prostate biopsies (TB) using Magnetic Resonance imaging/ultrasonography (MRI/US) fusion and to compare PCa detection with systematic biopsies (SB). PATIENTS AND ME THODS: A retrospective, descriptive and comparative study was conducted on the first 94 men who underwent TB using MRU/US fusion in our center since February 2017 to March 2018. All patients underwent a protocol of 6-12 cores of systematic biopsies (SB) (except 9) and 2-6 targeted coreson the MRI index lesion. The Hitachi/HiVision Preirus equipment was used with RVS software (Real-time virtual sonography) and a biplane transducer for the fusion imaging procedure. Clinically significant PCa (csPCa) was defined as: at least one core with a Gleason score of 3+4. RESULTS: The proportion of patients diagnosed with PCa was higher in TB compared with SB (p=0.035) and the mean of core performed for diagnosis was lower in TB compared with SB (p<0.001). A trend towards an improved detection of csPCa in TB compared to SB was observed (p=0.063). CONCLUSIONS: The MRI/US fusion targeted biopsies (TB) showed a higher detection rate of PCa, with less cores taken for diagnosis and a tendency to better identification of csCaP compared to SB.


OBJETIVO: El objetivo de este estudio es describir la experiencia inicial en nuestro centro de las primeras 94 Biopsias de Próstata dirigidas (BD) con fusión de imagen ecografía/Resonancia magnética (US/RMmp) y comparar la tasa de detección de CaP con las biopsias sistemáticas.MATERIAL Y MÉTODOS: Se realizó un estudio retrospectivo, descriptivo y comparativo de los primeros 94 pacientes sometidos a BD por fusión de imagen US/RMmp en nuestro centro desde febrero de 2017 hasta marzo de 2018. Todos los pacientes fueron sometidos a un protocolo de 6-12 cilindros de biopsias sistemáticas (BS) (menos 9) y de 2-6 cilindros dirigidos a las lesiones diana visualizadas en la RMmp. Se utilizó el equipo Hitachi/HiVision Preirus con software RVS (Real-time virtual sonography) y un transductor biplanar para la fusión de imagen. Se definió como CaP clínicamente significativo un GS ≥ 3+4 en, al menos, 1 de los cilindros realizados. RESULTADOS: La proporción de detección de CaP fue mayor en las BD que en las BS (p=0,035) y el número de cilindros realizados para su diagnóstico fue menor en las BD comparado con las BS (p<0,001). Se observó  una clara tendencia a una mayor identificación de CaP clínicamente significativo (CaPcs) en las BD comparado con las BS (p=0,063). CONCLUSIONES: Comparado con las BS, las BD por fusión de imagen US/RMmp presentaron una mayor tasa de detección de CaP y una tendencia a una mayor identificación de CaPcS con una necesidad menor de cilindros realizados.


Asunto(s)
Neoplasias de la Próstata/diagnóstico por imagen , Humanos , Biopsia Guiada por Imagen , Imagen por Resonancia Magnética , Masculino , Clasificación del Tumor , Estudios Retrospectivos , Ultrasonografía Intervencional
3.
Cancers (Basel) ; 11(3)2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30823672

RESUMEN

Voltage-gated potassium channels (Kv) are the largest group of ion channels. Kv are involved in controlling the resting potential and action potential duration in the heart and brain. Additionally, these proteins participate in cell cycle progression as well as in several other important features in mammalian cell physiology, such as activation, differentiation, apoptosis, and cell volume control. Therefore, Kv remarkably participate in the cell function by balancing responses. The implication of Kv in physiological and pathophysiological cell growth is the subject of study, as Kv are proposed as therapeutic targets for tumor regression. Though it is widely accepted that Kv channels control proliferation by allowing cell cycle progression, their role is controversial. Kv expression is altered in many cancers, and their participation, as well as their use as tumor markers, is worthy of effort. There is an ever-growing list of Kv that remodel during tumorigenesis. This review focuses on the actual knowledge of Kv channel expression and their relationship with neoplastic proliferation. In this work, we provide an update of what is currently known about these proteins, thereby paving the way for a more precise understanding of the participation of Kv during cancer development.

4.
Clin Cancer Res ; 24(15): 3755-3766, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29618620

RESUMEN

Purpose: To investigate the genetic basis of cisplatin resistance as efficacy of cisplatin-based chemotherapy in the treatment of distinct malignancies is often hampered by intrinsic or acquired drug resistance of tumor cells.Experimental Design: We produced 14 orthoxenograft transplanting human nonseminomatous testicular germ cell tumors (TGCT) in mice, keeping the primary tumor features in terms of genotype, phenotype, and sensitivity to cisplatin. Chromosomal and genetic alterations were evaluated in matched cisplatin-sensitive and their counterpart orthoxenografts that developed resistance to cisplatin in nude mice.Results: Comparative genomic hybridization analyses of four matched orthoxenografts identified recurrent chromosomal rearrangements across cisplatin-resistant tumors in three of them, showing gains at 9q32-q33.1 region. We found a clinical correlation between the presence of 9q32-q33.1 gains in cisplatin-refractory patients and poorer overall survival (OS) in metastatic germ cell tumors. We studied the expression profile of the 60 genes located at that genomic region. POLE3 and AKNA were the only two genes deregulated in resistant tumors harboring the 9q32-q33.1 gain. Moreover, other four genes (GCS, ZNF883, CTR1, and FLJ31713) were deregulated in all five resistant tumors independently of the 9q32-q33.1 amplification. RT-PCRs in tumors and functional analyses in Caenorhabditis elegans (C. elegans) indicate that the influence of 9q32-q33.1 genes in cisplatin resistance can be driven by either up- or downregulation. We focused on glucosylceramide synthase (GCS) to demonstrate that the GCS inhibitor DL-threo-PDMP resensitizes cisplatin-resistant germline-derived orthoxenografts to cisplatin.Conclusions: Orthoxenografts can be used preclinically not only to test the efficiency of drugs but also to identify prognosis markers and gene alterations acting as drivers of the acquired cisplatin resistance. Clin Cancer Res; 24(15); 3755-66. ©2018 AACR.


Asunto(s)
Cisplatino/efectos adversos , ADN Polimerasa III/genética , Proteínas de Unión al ADN/genética , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Proteínas Nucleares/genética , Nucleoproteínas/genética , Neoplasias Testiculares/tratamiento farmacológico , Factores de Transcripción/genética , Adolescente , Adulto , Animales , Línea Celular Tumoral , Aberraciones Cromosómicas/efectos de los fármacos , Cromosomas Humanos Par 9/efectos de los fármacos , Cromosomas Humanos Par 9/genética , Cisplatino/administración & dosificación , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/patología , Mutación Puntual/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
5.
Free Radic Biol Med ; 118: 44-58, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29471108

RESUMEN

Marfan syndrome (MFS) is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix fibrillin-containing microfibrils and dysfunction of TGF-ß signaling. Here we identify the molecular targets of redox stress in aortic aneurysms from MFS patients, and investigate the role of NOX4, whose expression is strongly induced by TGF-ß, in aneurysm formation and progression in a murine model of MFS. Working models included aortae and cultured vascular smooth muscle cells (VSMC) from MFS patients, and a NOX4-deficient Marfan mouse model (Fbn1C1039G/+-Nox4-/-). Increased tyrosine nitration and reactive oxygen species levels were found in the tunica media of human aortic aneurysms and in cultured VSMC. Proteomic analysis identified nitrated and carbonylated proteins, which included smooth muscle α-actin (αSMA) and annexin A2. NOX4 immunostaining increased in the tunica media of human Marfan aorta and was transcriptionally overexpressed in VSMC. Fbn1C1039G/+-Nox4-/- mice aortas showed a reduction of fragmented elastic fibers, which was accompanied by an amelioration in the Marfan-associated enlargement of the aortic root. Increase in the contractile phenotype marker calponin in the tunica media of MFS mice aortas was abrogated in Fbn1C1039G/+-Nox4-/- mice. Endothelial dysfunction evaluated by myography in the Marfan ascending aorta was prevented by the absence of Nox4 or catalase-induced H2O2 decomposition. We conclude that redox stress occurs in MFS, whose targets are actin-based cytoskeleton members and regulators of extracellular matrix homeostasis. Likewise, NOX4 have an impact in the progression of the aortic dilation in MFS and in the structural organization of the aortic tunica media, the VSMC phenotypic modulation, and endothelial function.


Asunto(s)
Aneurisma de la Aorta/metabolismo , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patología , NADPH Oxidasa 4/metabolismo , Estrés Oxidativo/fisiología , Adulto , Animales , Aneurisma de la Aorta/etiología , Femenino , Humanos , Masculino , Síndrome de Marfan/complicaciones , Ratones , Ratones Noqueados , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Oxidación-Reducción , Adulto Joven
6.
Clin Cancer Res ; 23(12): 3203-3213, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28302866

RESUMEN

Purpose: We aimed to maximize the performance of detecting genetic alterations in lung cancer using high-throughput sequencing for patient-derived xenografts (PDXs).Experimental Design: We undertook an integrated RNA and whole-exome sequencing of 14 PDXs. We focused on the genetic and functional analysis of ß2-microglobulin (B2M), a component of the HLA class-I complex.Results: We identified alterations in genes involved in various functions, such as B2M involved in immunosurveillance. We extended the mutational analysis of B2M to about 230 lung cancers. Five percent of the lung cancers carried somatic mutations, most of which impaired the correct formation of the HLA-I complex. We also report that genes such as CALR, PDIA3, and TAP1, which are involved in the maturation of the HLA-I complex, are altered in lung cancer. By gene expression microarrays, we observed that restitution of B2M in lung cancer cells upregulated targets of IFNα/IFNγ. Furthermore, one third of the lung cancers lacked the HLA-I complex, which was associated with lower cytotoxic CD8+ lymphocyte infiltration. The levels of B2M and HLA-I proteins correlated with those of PD-L1. Finally, a deficiency in HLA-I complex and CD8+ infiltration tended to correlate with reduced survival of patients with lung cancer treated with anti-PD-1/anti-PD-L1.Conclusions: Here, we report recurrent inactivation of B2M in lung cancer. These observations, coupled with the mutations found at CALR, PDIA3, and TAP1, and the downregulation of the HLA-I complex, indicate that an abnormal immunosurveillance axis contributes to lung cancer development. Finally, our observations suggest that an impaired HLA-I complex affects the response to anti-PD-1/anti-PD-L1 therapies. Clin Cancer Res; 23(12); 3203-13. ©2016 AACR.


Asunto(s)
Genómica , Antígenos de Histocompatibilidad Clase I/genética , Neoplasias Pulmonares/genética , Microglobulina beta-2/genética , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/inmunología , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Mutación , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Secuenciación del Exoma , Ensayos Antitumor por Modelo de Xenoinjerto , Microglobulina beta-2/antagonistas & inhibidores , Microglobulina beta-2/inmunología
7.
Cancer Res ; 75(7): 1287-97, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25833829

RESUMEN

Correct apicobasal polarization and intercellular adhesions are essential for the appropriate development of normal epithelia. Here, we investigated the contribution of the cell polarity regulator PARD3 to the development of lung squamous cell carcinomas (LSCC). Tumor-specific PARD3 alterations were found in 8% of LSCCs examined, placing PARD3 among the most common tumor suppressor genes in this malignancy. Most PAR3-mutant proteins exhibited a relative reduction in the ability to mediate formation of tight junctions and actin-based protrusions, bind atypical protein kinase C, activate RAC1, and activate STAT3 at cell confluence. Thus, PARD3 alterations prevented the formation of contacts between neighboring cells and the subsequent downstream signaling. Notably, reconstituting PAR3 activity in vivo reduced tumor-invasive and metastatic properties. Our findings define PARD3 as a recurrently inactivated cell polarity regulator in LSCC that affects tumor aggressiveness and metastasis.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/genética , Factor de Transcripción STAT3/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Secuencia de Bases , Carcinoma de Células Escamosas/secundario , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Proteínas de la Membrana/metabolismo , Ratones Desnudos , Mutación , Invasividad Neoplásica , Trasplante de Neoplasias , Proteína Quinasa C/metabolismo , Análisis de Secuencia de ADN , Transcriptoma , Proteína de Unión al GTP rac1/metabolismo
8.
BMC Med Genomics ; 8: 7, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25881171

RESUMEN

BACKGROUND: Atherosclerosis severity-independent alterations in DNA methylation, a reversible and highly regulated DNA modification, have been detected in aortic atheromas, thus supporting the hypothesis that epigenetic mechanisms participate in the pathogenesis of atherosclerosis. One yet unaddressed issue is whether the progression of atherosclerosis is associated with an increase in DNA methylation drift in the vascular tissue. The purpose of the study was to identify CpG methylation profiles that vary with the progression of atherosclerosis in the human aorta. METHODS: We interrogated a set of donor-matched atherosclerotic and normal aortic samples ranging from histological grade III to VII, with a high-density (>450,000 CpG sites) DNA methylation microarray. RESULTS: We detected a correlation between histological grade and intra-pair differential methylation for 1,985 autosomal CpGs, the vast majority of which drifted towards hypermethylation with lesion progression. The identified CpG loci map to genes that are regulated by known critical transcription factors involved in atherosclerosis and participate in inflammatory and immune responses. Functional relevance was corroborated by crossing the DNA methylation profiles with expression data obtained in the same human aorta sample set, by a transcriptome-wide analysis of murine atherosclerotic aortas and from available public databases. CONCLUSIONS: Our work identifies for the first time atherosclerosis progression-specific DNA methylation profiles in the vascular tissue. These findings provide potential novel markers of lesion severity and targets to counteract the progression of the atheroma.


Asunto(s)
Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Metilación de ADN , Animales , Análisis por Conglomerados , Islas de CpG , Bases de Datos Genéticas , Progresión de la Enfermedad , Epigénesis Genética , Humanos , Sistema Inmunológico , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Placa Aterosclerótica/patología , Factores de Transcripción/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 35(4): 960-72, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25593132

RESUMEN

OBJECTIVE: Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-ß signaling. TGF-ß is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-ß signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan's syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. APPROACH AND RESULTS: Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (α-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-ß pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. CONCLUSIONS: In Marfan VSMC, both in tissue and in culture, there are variable TGF-ß-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan's syndrome aneurysm formation.


Asunto(s)
Aneurisma de la Aorta/etiología , Diferenciación Celular , Síndrome de Marfan/complicaciones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Actinas/metabolismo , Aorta/metabolismo , Aorta/patología , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/patología , Biomarcadores/metabolismo , Proteínas de Unión al Calcio/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Colágeno Tipo I/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dilatación Patológica , Adhesiones Focales/metabolismo , Humanos , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patología , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Proteínas Nucleares/metabolismo , Fenotipo , Transducción de Señal , Fibras de Estrés/metabolismo , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Remodelación Vascular , Proteína de Unión al GTP rhoA/metabolismo , Calponinas
10.
Biochim Biophys Acta ; 1848(10 Pt B): 2477-92, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25517985

RESUMEN

Potassium channels are a diverse group of pore-forming transmembrane proteins that selectively facilitate potassium flow through an electrochemical gradient. They participate in the control of the membrane potential and cell excitability in addition to different cell functions such as cell volume regulation, proliferation, cell migration, angiogenesis as well as apoptosis. Because these physiological processes are essential for the correct cell function, K+ channels have been associated with a growing number of diseases including cancer. In fact, different K+ channel families such as the voltage-gated K+ channels, the ether à-go-go K+ channels, the two pore domain K+ channels and the Ca2+-activated K+ channels have been associated to tumor biology. Potassium channels have a role in neoplastic cell-cycle progression and their expression has been found abnormal in many types of tumors and cancer cells. In addition, the expression and activity of specific K+ channels have shown a significant correlation with the tumor malignancy grade. The aim of this overview is to summarize published data on K+ channels that exhibit oncogenic properties and have been linked to a more malignant cancer phenotype. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Potasio/metabolismo , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Progresión de la Enfermedad , Humanos , Potenciales de la Membrana/efectos de los fármacos , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/prevención & control , Fenotipo , Bloqueadores de los Canales de Potasio/uso terapéutico , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Canales de Potasio Calcio-Activados/genética , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/genética
11.
Onco Targets Ther ; 7: 2215-25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25525371

RESUMEN

BACKGROUND: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. AIM: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. METHODS: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. RESULTS: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. CONCLUSION: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP.

12.
Mediators Inflamm ; 2014: 120673, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25276049

RESUMEN

Endometriosis, defined as the growth of endometrial tissue outside the uterus, is a common gynecologic condition affecting millions of women worldwide. It is an inflammatory, estrogen-dependent complex disorder, with broad symptomatic variability, pelvic pain, and infertility being the main characteristics. Ovarian endometriomas are frequently developed in women with endometriosis. Late diagnosis is one of the main problems of endometriosis; thus, it is important to identify biomarkers for early diagnosis. The aim of the present work is to evaluate the ecto-nucleotidases activities in the contents of endometriomas. These enzymes, through the regulation of extracellular ATP and adenosine levels, are key enzymes in inflammatory processes, and their expression has been previously characterized in human endometrium. To achieve our objective, the echo-guided aspirated fluids of endometriomas were analyzed by evaluating the ecto-nucleotidases activities and compared with simple cysts. Our results show that enzyme activities are quantifiable in the ovarian cysts aspirates and that endometriomas show significantly higher ecto-nucleotidases activities than simple cysts (5.5-fold increase for ATPase and 20-fold for ADPase), thus being possible candidates for new endometriosis biomarkers. Moreover, we demonstrate the presence of ecto-nucleotidases bearing exosomes in these fluids. These results add up to the knowledge of the physiopathologic mechanisms underlying endometriosis and, open up a promising new field of study.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Biomarcadores/metabolismo , Endometriosis/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Femenino , Humanos , Microscopía Electrónica , Persona de Mediana Edad , Quistes Ováricos/metabolismo , Adulto Joven
13.
Circ Cardiovasc Genet ; 7(5): 692-700, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25091541

RESUMEN

BACKGROUND: Epigenetic alterations may contribute to the development of atherosclerosis. In particular, DNA methylation, a reversible and highly regulated DNA modification, could influence disease onset and progression because it functions as an effector for environmental influences, including diet and lifestyle, both of which are risk factors for cardiovascular diseases. METHODS AND RESULTS: To address the role of DNA methylation changes in atherosclerosis, we compared a donor-matched healthy and atherosclerotic human aorta sample using whole-genome shotgun bisulfite sequencing. We observed that the atherosclerotic portion of the aorta was hypermethylated across many genomic loci in comparison with the matched healthy counterpart. Furthermore, we defined specific loci of differential DNA methylation using a set of donor-matched aortic samples and a high-density (>450 000 CpG sites) DNA methylation microarray. The functional importance in the disease was corroborated by crossing the DNA methylation signature with the corresponding expression data of the same samples. Among the differentially methylated CpGs associated with atherosclerosis onset, we identified genes participating in endothelial and smooth muscle functions. These findings provide new clues toward a better understanding of the molecular mechanisms of atherosclerosis. CONCLUSIONS: Our data identify an atherosclerosis-specific DNA methylation profile that highlights the contribution of different genes and pathways to the disorder. Interestingly, the observed gain of DNA methylation in the atherosclerotic lesions justifies efforts to develop DNA demethylating agents for therapeutic benefit.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/genética , Mapeo Cromosómico/métodos , Metilación de ADN , Aorta/patología , Análisis por Conglomerados , Islas de CpG , Dieta , Progresión de la Enfermedad , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Humanos , Estilo de Vida , Factores de Riesgo , Sulfitos/química
14.
Arterioscler Thromb Vasc Biol ; 34(7): 1522-30, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24855057

RESUMEN

OBJECTIVE: Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. APPROACH AND RESULTS: Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. CONCLUSIONS: Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension.


Asunto(s)
Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ1/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Potasio/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Canales de Potasio KCNQ/química , Canales de Potasio KCNQ/efectos de los fármacos , Canales de Potasio KCNQ/genética , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/genética , Microdominios de Membrana/metabolismo , Potenciales de la Membrana , Músculo Liso Vascular/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Estructura Cuaternaria de Proteína , Ratas , Transfección , Xenopus
15.
Mediators Inflamm ; 2014: 509027, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24707115

RESUMEN

One of the strategies used by tumors to evade immunosurveillance is the accumulation of extracellular adenosine, which has immunosupressive and tumor promoting effects. The study of the mechanisms leading to adenosine formation at the tumor interstitium are therefore of great interest in oncology. The dominant pathway generating extracellular adenosine in tumors is the dephosphorylation of ATP by ecto-nucleotidases. Two of these enzymes acting sequentially, CD39 and CD73, efficiently hydrolyze extracellular ATP to adenosine. They have been found to play a crucial role in a variety of tumors, but there were no data concerning endometrial cancer, the most frequent of the invasive tumors of the female genital tract. The aim of the present work is to study the expression of CD39 and CD73 in human endometrial cancer. We have analyzed protein and gene expression, as well as enzyme activity, in type I endometrioid adenocarcinomas and type II serous adenocarcinomas and their nonpathological endometrial counterparts. High levels of both enzymes were found in tumor samples, with significantly increased expression of CD39 in type II serous tumors, which also coincided with the higher tumor grade. Our results reinforce the involvement of the adenosinergic system in cancer, emphasizing the relevance of ecto-nucleotidases as emerging therapeutic targets in oncology.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenocarcinoma/metabolismo , Antígenos CD/metabolismo , Apirasa/metabolismo , Neoplasias Endometriales/metabolismo , Adenocarcinoma/genética , Adenosina/metabolismo , Anciano , Anciano de 80 o más Años , Neoplasias Endometriales/genética , Femenino , Proteínas Ligadas a GPI/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad
16.
Gynecol Oncol ; 132(1): 211-20, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24262875

RESUMEN

OBJECTIVE: The objective of this study is to chemosensitize ovarian cancer (OVCa) cells to cisplatin (CDDP) using an inhibitor of Survivin, YM155. The efficacy of YM155 in combination with CDDP was determined in vitro, ex vivo and in vivo. METHODS: Human OVCa cell lines A2780p and their cisplatin-resistant derivative A2780cis, were treated with CDDP, YM155, and the combined treatment (YM155+CDDP), and cell viability, mRNA and protein expression levels, cell-cycle distribution, and DNA damage were then evaluated. Furthermore, the efficacy of YM155 combined with CDDP was further examined in established primary cell cultures and xenograft models. RESULTS: The combination of YM155 with CDDP induced G2/M cell cycle arrest and apoptosis, increased DNA damage, and decreased Survivin levels, especially in A2780cis CDDP-resistant cells. Additionally, YM155 in combination with CDDP sensitized primary cell cultures to CDDP. Studies in vivo showed how this combination significantly decreased the tumor size of OVCa xenografts. CONCLUSIONS: Our results demonstrate that in OVCa cells the expression of Survivin did not affect their sensitivity to YM155, suggesting that Survivin was not the only target of YM155. The combination of YM155 with CDDP could be a good option for therapy of CDDP-resistant OVCa, independently of p53 status.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cisplatino/farmacología , Imidazoles/farmacología , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Naftoquinonas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Línea Celular Tumoral , Daño del ADN , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Ováricas/patología , Survivin
17.
Front Physiol ; 4: 283, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24133455

RESUMEN

Voltage-dependent K(+) channels (Kv) are involved in a number of physiological processes, including immunomodulation, cell volume regulation, apoptosis as well as differentiation. Some Kv channels participate in the proliferation and migration of normal and tumor cells, contributing to metastasis. Altered expression of Kv1.3 and Kv1.5 channels has been found in several types of tumors and cancer cells. In general, while the expression of Kv1.3 apparently exhibits no clear pattern, Kv1.5 is induced in many of the analyzed metastatic tissues. Interestingly, evidence indicates that Kv1.5 channel shows inversed correlation with malignancy in some gliomas and non-Hodgkin's lymphomas. However, Kv1.3 and Kv1.5 are similarly remodeled in some cancers. For instance, expression of Kv1.3 and Kv1.5 correlates with a certain grade of tumorigenicity in muscle sarcomas. Differential remodeling of Kv1.3 and Kv1.5 expression in human cancers may indicate their role in tumor growth and their importance as potential tumor markers. However, despite of this increasing body of information, which considers Kv1.3 and Kv1.5 as emerging tumoral markers, further research must be performed to reach any conclusion. In this review, we summarize what it has been lately documented about Kv1.3 and Kv1.5 channels in human cancer.

18.
BMC Cancer ; 13: 382, 2013 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-23937707

RESUMEN

BACKGROUND: Cisplatin (CDDP) resistance in testicular germ cell tumors (GCTs) is still a clinical challenge, and one associated with poor prognosis. The purpose of this work was to test pazopanib, an anti-tumoral and anti-angiogenic multikinase inhibitor, and its combination with lapatinib (an anti-ErbB inhibitor) in mouse orthotopic models of human testicular GCTs. METHODS: We used two different models of human testicular GCTs orthotopically grown in nude mice; a CDDP-sensitive choriocarcinoma (TGT38) and a new orthotopic model generated from a metastatic GCT refractory to first-line CDDP chemotherapy (TGT44). Nude mice implanted with these orthotopic tumors were treated with the inhibitors and the effect on tumoral growth and angiogenesis was evaluated. RESULTS: TGT44 refractory tumor had an immunohistochemical profile similar to the original metastasis, with characteristics of yolk sac tumor. TGT44 did not respond when treated with cisplatin. In contrast, pazopanib had an anti-angiogenic effect and anti-tumor efficacy in this model. Pazopanib in combination with lapatinib in TGT38, an orthotopic model of choriocarcinoma had an additive effect blocking tumor growth. CONCLUSIONS: We present pazopanib as a possible agent for the alternative treatment of CDDP-sensitive and CDDP-refractory GCT patients, alone or in combination with anti-ErbB therapies.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Pirimidinas/farmacología , Sulfonamidas/farmacología , Neoplasias Testiculares/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Animales , Western Blotting , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Humanos , Indazoles , Masculino , Ratones , Ratones Desnudos , Reacción en Cadena en Tiempo Real de la Polimerasa , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Leukoc Biol ; 94(4): 779-89, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23847097

RESUMEN

Kv, which play a role in the immune system, are remodeled during carcinogenesis. Leukocytes present a limited Kv repertoire, with Kv1.3 and Kv1.5 as isoforms that are involved in neoplastic processes, such as proliferation and migration. In this study, we identified Kv1.5 in B-lymphocytes, characterized its role in proliferation and migration, and analyzed Kv1.3 and Kv1.5 expression in human non-Hodgkin lymphomas. DLBCL, F, MCL, ALCL, and T, along with control N specimens, were analyzed. Kv1.3 and Kv1.5 were found to be remodeled differentially; whereas Kv1.3 expression did not correlate with the state of dedifferentiation or the nature of lymphomatous cells, Kv1.5 abundance correlated inversely with clinical aggressiveness. Whereas indolent F expressed noticeable levels of Kv1.5, aggressive DLBCL showed low Kv1.5 levels. In addition, control LNs expressed heterogeneous high levels of Kv1.3, which could indicate some reactivity, whereas Kv1.5 abundance was low and quite homogeneous. Our data show that Kv1.5 is a determinant of human B cell proliferation and migration, thereby identifying this channel as a new target for immunomodulation. Our work also provides new insights into the use of Kv1.3 and Kv1.5 as potential targets during tumorigenesis.


Asunto(s)
Linfocitos B/fisiología , Canal de Potasio Kv1.5/metabolismo , Linfoma/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Inmunohistoquímica , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.5/genética , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Linfoma/genética , Linfoma/patología , Ratones , Persona de Mediana Edad , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adulto Joven
20.
Purinergic Signal ; 9(2): 227-37, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23225236

RESUMEN

Extracellular ATP and its hydrolysis product, adenosine, acting through specific receptors collectively named purinergic receptors, regulate female fertility by influencing the endometrial fluid microenvironment. There are four major groups of ecto-nucleotidases that control the levels of extracellular ATP and adenosine and thus their availability at purinergic receptors: ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-nucleotide pyrophosphatase/phospho-diesterases (E-NPPs), ecto-5'-nucleotidase (5'NT), and alkaline phosphatases (APs). The aim of the present work is to characterize the expression and distribution of ecto-nucleotidases in human endometrium along the menstrual cycle and after menopause, to evaluate their potential utility as fertility markers. We examined proliferative, secretory and atrophic endometria from women without endometrial pathology undergoing hysterectomy. We show that the ecto-nucleotidases are mainly present at endometrial epithelia, both luminal and glandular, and that their expression fluctuates along the cycle and also changes after menopause. An important result was identifying NPP3 as a new biological marker of tubal metaplasia. Our results emphasize the relevance of the study of purinergic signaling in human fertility.


Asunto(s)
Adenosina Trifosfatasas/análisis , Adenosina Trifosfatasas/metabolismo , Endometrio/enzimología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Inmunohistoquímica , Menopausia/metabolismo , Microscopía Confocal , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA