Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
CPT Pharmacometrics Syst Pharmacol ; 13(3): 410-423, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38164114

RESUMEN

Oral drug absorption kinetics are usually established in populations with a properly functioning gastrointestinal tract. However, many diseases and therapeutics can alter gastrointestinal physiology and cause diarrhea. The extent of diarrhea-associated impact on drug pharmacokinetics has not been quantitatively described. To address this knowledge gap, we used a population pharmacokinetic modeling approach with data collected in a phase IIa study of matched human immunodeficiency virus (HIV)-infected adults with/without cryptosporidiosis and diarrhea to examine diarrhea-associated impact on oral clofazimine pharmacokinetics. A population pharmacokinetic model was developed with 428 plasma samples from 23 HIV-infected adults with/without Cryptosporidium infection using nonlinear mixed-effects modeling. Covariates describing cryptosporidiosis-associated diarrhea severity (e.g., number of diarrhea episodes, diarrhea grade) or HIV infection (e.g., viral load, CD4+ T cell count) were evaluated. A two-compartment model with lag time and first-order absorption and elimination best fit the data. Maximum diarrhea grade over the study duration was found to be associated with a more than sixfold reduction in clofazimine bioavailability. Apparent clofazimine clearance, intercompartmental clearance, central volume of distribution, and peripheral volume of distribution were 3.71 L/h, 18.2 L/h (interindividual variability [IIV] 45.0%), 473 L (IIV 3.46%), and 3434 L, respectively. The absorption rate constant was 0.625 h-1 (IIV 149%) and absorption lag time was 1.83 h. In conclusion, the maximum diarrhea grade observed for the duration of oral clofazimine administration was associated with a significant reduction in clofazimine bioavailability. Our results highlight the importance of studying disease impacts on oral therapeutic pharmacokinetics to inform dose optimization and maximize the chance of treatment success.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Infecciones por VIH , Adulto , Humanos , Clofazimina/farmacocinética , Clofazimina/uso terapéutico , Diarrea/tratamiento farmacológico , VIH , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Ensayos Clínicos Fase II como Asunto
2.
JAMA Pediatr ; 176(3): 253-261, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040920

RESUMEN

IMPORTANCE: Childhood community-acquired pneumonia (CAP) is usually treated with 10 days of antibiotics. Shorter courses may be effective with fewer adverse effects and decreased potential for antibiotic resistance. OBJECTIVE: To compare a short (5-day) vs standard (10-day) antibiotic treatment strategy for CAP in young children. DESIGN, SETTING, AND PARTICIPANTS: Randomized double-blind placebo-controlled clinical trial in outpatient clinic, urgent care, or emergency settings in 8 US cities. A total of 380 healthy children aged 6 to 71 months with nonsevere CAP demonstrating early clinical improvement were enrolled from December 2, 2016, to December 16, 2019. Data were analyzed from January to September 2020. INTERVENTION: On day 6 of their originally prescribed therapy, participants were randomized 1:1 to receive 5 days of matching placebo or 5 additional days of the same antibiotic. MAIN OUTCOMES AND MEASURES: The primary end point was the end-of-treatment response adjusted for duration of antibiotic risk (RADAR), a composite end point that ranks each child's clinical response, resolution of symptoms, and antibiotic-associated adverse effects in an ordinal desirability of outcome ranking (DOOR). Within each DOOR rank, participants were further ranked by the number of antibiotic days, assuming that shorter antibiotic durations were more desirable. Using RADAR, the probability of a more desirable outcome was estimated for the short- vs standard-course strategy. In a subset of children, throat swabs were collected between study days 19 and 25 to quantify antibiotic resistance genes in oropharyngeal flora. RESULTS: A total of 380 children (189 randomized to short course and 191 randomized to standard course) made up the study population. The mean (SD) age was 35.7 (17.2) months, and 194 participants (51%) were male. Of the included children, 8 were Asian, 99 were Black or African American, 234 were White, 32 were multiracial, and 7 were of unknown or unreported race; 33 were Hispanic or Latino, 344 were not Hispanic or Latino, and 3 were of unknown or unreported ethnicity. There were no differences between strategies in the DOOR or its individual components. Fewer than 10% of children in either strategy had an inadequate clinical response. The short-course strategy had a 69% (95% CI, 63-75) probability of a more desirable RADAR outcome compared with the standard-course strategy. A total of 171 children were included in the resistome analysis. The median (range) number of antibiotic resistance genes per prokaryotic cell (RGPC) was significantly lower in the short-course strategy compared with the standard-course strategy for total RGPC (1.17 [0.35-2.43] vs 1.33 [0.46-11.08]; P = .01) and ß-lactamase RGPC (0.55 [0.18-1.24] vs 0.60 [0.21-2.45]; P = .03). CONCLUSIONS AND RELEVANCE: In this study, among children responding to initial treatment for outpatient CAP, a 5-day antibiotic strategy was superior to a 10-day strategy. The shortened approach resulted in similar clinical response and antibiotic-associated adverse effects, while reducing antibiotic exposure and resistance. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02891915.


Asunto(s)
Infecciones Comunitarias Adquiridas , Neumonía , Antibacterianos/efectos adversos , Niño , Preescolar , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Método Doble Ciego , Femenino , Humanos , Masculino , Pacientes Ambulatorios , Neumonía/tratamiento farmacológico
3.
Genes Genet Syst ; 95(2): 85-93, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32389919

RESUMEN

Effects of environmental factors for growth of Escherichia coli on spontaneous mutagenesis and homologous recombination events are described. By analyzing rifampicin-resistant (Rifr) mutation frequencies in an E. coli strain lacking MutM and MutY repair enzymes, which suppress base substitution mutations caused by 8-oxoguanine (7,8 dihydro-8-oxoguanine; 8-oxoG) in DNA, we examined levels of oxidative DNA damage produced in normally growing cells. The level of 8-oxoG DNA damage was about 9- and 63-fold higher in cells grown in M9-glucose and M9-glycerol media, respectively, than in those grown in LB medium. We also found that about 14-fold more 8-oxoG DNA damage was produced in cells grown in about 0.1% oxygen than in those grown in the normal atmosphere. However, Rifr mutation frequency in wild-type cells was unchanged in such different growth conditions, suggesting that the capacity of repair mechanisms is sufficient to suppress mutations caused by 8-oxoG even at very high levels in cells growing in the particular conditions. On the other hand, the frequency of spontaneous homologous recombination events in wild-type E. coli cells varied with different growth conditions. When cells were grown in M9-glucose and M9-glycerol media, the spontaneous recombination frequency increased to about 4.3- and 7.3-fold, respectively, higher than that in LB medium. Likewise, the spontaneous recombination frequency was about 3.5-fold higher in cells growing in the hypoxic condition than in cells growing in the atmosphere. When cells were grown in anaerobic conditions, the recombination frequency decreased to half of that in the atmosphere. These data indicated that spontaneous homologous recombination is highly responsive to environmental factors such as nutrition and oxygen concentration.


Asunto(s)
Glucosa/metabolismo , Recombinación Homóloga , Mutagénesis , Oxígeno/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN-Formamidopirimidina Glicosilasa/genética , ADN-Formamidopirimidina Glicosilasa/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA