Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Polymers (Basel) ; 14(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893969

RESUMEN

The production of nanofibrous materials for soft tissue repair that resemble extracellular matrices (ECMs) is challenging. Electrospinning uniquely produces scaffolds resembling the ultrastructure of natural ECMs. Herein, electrospinning was used to fabricate Bombyx mori silk fibroin (SF) and SF/halloysite nanotube (HNT) composite scaffolds. Different HNT loadings were examined, but 1 wt% HNTs enhanced scaffold hydrophilicity and water uptake capacity without loss of mechanical strength. The inclusion of 1 wt% HNTs in SF scaffolds also increased the scaffold's thermal stability without altering the molecular structure of the SF, as revealed by thermogravimetric analyses and Fourier transform infrared spectroscopy (FTIR), respectively. SF/HNT 1 wt% composite scaffolds better supported the viability and spreading of 3T3 fibroblasts and the differentiation of C2C12 myoblasts into aligned myotubes. These scaffolds coated with decellularised ECM from 3T3 cells or primary human dermal fibroblasts (HDFs) supported the growth of primary human keratinocytes. However, SF/HNT 1 wt% composite scaffolds with HDF-derived ECM provided the best microenvironment, as on these, keratinocytes formed intact monolayers with an undifferentiated, basal cell phenotype. Our data indicate the merits of SF/HNT 1 wt% composite scaffolds for applications in soft tissue repair and the expansion of primary human keratinocytes for skin regeneration.

2.
Comput Struct Biotechnol J ; 19: 2806-2818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968333

RESUMEN

SARS-CoV-2 has rapidly spread throughout the world's population since its initial discovery in 2019. The virus infects cells via a glycosylated spike protein located on its surface. The protein primarily binds to the angiotensin-converting enzyme-2 (ACE2) receptor, using glycosaminoglycans (GAGs) as co-receptors. Here, we performed bioinformatics and molecular dynamics simulations of the spike protein to investigate the existence of additional GAG binding sites on the receptor-binding domain (RBD), separate from previously reported heparin-binding sites. A putative GAG binding site in the N-terminal domain (NTD) of the protein was identified, encompassing residues 245-246. We hypothesized that GAGs of a sufficient length might bridge the gap between this site and the PRRARS furin cleavage site, including the mutation S247R. Docking studies using GlycoTorch Vina and subsequent MD simulations of the spike trimer in the presence of dodecasaccharides of the GAGs heparin and heparan sulfate supported this possibility. The heparan sulfate chain bridged the gap, binding the furin cleavage site and S247R. In contrast, the heparin chain bound the furin cleavage site and surrounding glycosylation structures, but not S247R. These findings identify a site in the spike protein that favors heparan sulfate binding that may be particularly pertinent for a better understanding of the recent UK and South African strains. This will also assist in future targeted therapy programs that could include repurposing clinical heparan sulfate mimetics.

3.
Sci Rep ; 9(1): 18561, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811191

RESUMEN

The long-term expansion of keratinocytes under conditions that avoid xenogeneic components (i.e. animal serum- and feeder cell-free) generally causes diminished proliferation and increased terminal differentiation. Here we present a culture system free of xenogeneic components that retains the self-renewal capacity of primary human keratinocytes. In vivo the extracellular matrix (ECM) of the tissue microenvironment has a major influence on a cell's fate. We used ECM from human dermal fibroblasts, cultured under macromolecular crowding conditions to facilitate matrix deposition and organisation, in a xenogeneic-free keratinocyte expansion protocol. Phospholipase A2 decellularisation produced ECM whose components resembled the core matrix composition of natural dermis by proteome analyses. Keratinocytes proliferated rapidly on these matrices, retained their small size, expressed p63, lacked keratin 10 and rarely expressed keratin 16. The colony forming efficiency of these keratinocytes was enhanced over that of keratinocytes grown on collagen I, indicating that dermal fibroblast-derived matrices maintain the in vitro expansion of keratinocytes in a stem-like state. Keratinocyte sheets formed on such matrices were multi-layered with superior strength and stability compared to the single-layered sheets formed on collagen I. Thus, keratinocytes expanded using our xenogeneic-free protocol retained a stem-like state, but when triggered by confluence and calcium concentration, they stratified to produce epidermal sheets with a potential clinical use.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Queratinocitos/fisiología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Dermis/citología , Células Nutrientes/citología , Células Nutrientes/metabolismo , Fibroblastos/citología , Humanos , Queratinocitos/trasplante , Trasplante de Piel/métodos
4.
Front Oncol ; 9: 1316, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850210

RESUMEN

Heparanase has been viewed as a promising anti-cancer drug target for almost two decades, but no anti-heparanase therapy has yet reached the clinic. This endoglycosidase is highly expressed in a variety of malignancies, and its high expression is associated with greater tumor size, more metastases, and a poor prognosis. It was first described as an enzyme cleaving heparan sulfate chains of proteoglycans located in extracellular matrices and on cell surfaces, but this is not its only function. It is a multi-functional protein with activities that are enzymatic and non-enzymatic and which take place both outside of the cell and intracellularly. Knowledge of the crystal structure of heparanase has assisted the interpretation of earlier structure-function studies as well as in the design of potential anti-heparanase agents. This review re-examines the various functions of heparanase in light of the structural data. The functions of the heparanase variant, T5, and structure and functions of heparanase-2 are also examined as these heparanase related, but non-enzymatic, proteins are likely to influence the in vivo efficacy of anti-heparanase drugs. The anti-heparanase drugs currently under development predominately focus on inhibiting the enzymatic activity of heparanase, which, in the absence of inhibitors with high clinical efficacy, prompts a discussion of whether this is the best approach. The diversity of outcomes attributed to heparanase and the difficulties of unequivocally determining which of these are due to its enzymatic activity is also discussed and leads us to the conclusion that heparanase is a valid, but challenging drug target for cancer.

5.
Molecules ; 24(5)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845788

RESUMEN

Glycosaminoglycan (GAG) mimetics are synthetic or semi-synthetic analogues of heparin or heparan sulfate, which are designed to interact with GAG binding sites on proteins. The preclinical stages of drug development rely on efficacy and toxicity assessment in animals and aim to apply these findings to clinical studies. However, such data may not always reflect the human situation possibly because the GAG binding site on the protein ligand in animals and humans could differ. Possible inter-species differences in the GAG-binding sites on antithrombin III, heparanase, and chemokines of the CCL and CXCL families were examined by sequence alignments, molecular modelling and assessment of surface electrostatic potentials to determine if one species of laboratory animal is likely to result in more clinically relevant data than another. For each protein, current understanding of GAG binding is reviewed from a protein structure and function perspective. This combinatorial analysis shows chemokine dimers and oligomers can present different GAG binding surfaces for the same target protein, whereas a cleft-like GAG binding site will differently influence the types of GAG structures that bind and the species preferable for preclinical work. Such analyses will allow an informed choice of animal(s) for preclinical studies of GAG mimetic drugs.


Asunto(s)
Glicosaminoglicanos/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Sitios de Unión , Humanos , Modelos Animales , Unión Proteica , Conformación Proteica
6.
Methods Mol Biol ; 1889: 185-212, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30367415

RESUMEN

The ability to grow C2C12 myoblasts in a completely defined, serum free medium enables researchers to investigate the role of specific factors in myoblast proliferation, migration, fusion, and differentiation without the confounding effects of serum. The use of defined, animal free in vitro culture systems will improve reproducibility between research groups and may also enhance translation of tissue engineering techniques into clinical applications. Here, we describe the use and characterization of a serum free culture system for C2C12 myoblasts using standard tissue culture medium and readily available, defined growth factors and supplements.


Asunto(s)
Técnicas de Cultivo de Célula , Medios de Cultivo , Proteínas de la Matriz Extracelular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Ratones , Fibras Musculares Esqueléticas/citología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo
7.
J Lipid Res ; 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30201632

RESUMEN

This article has been withdrawn by the authors as part of this review overlapped with the contents of Pietrangelo A and Ridgway ND. 2018. Cellular and Molecular Life Sciences. 75; 3079-98.

8.
Sci Rep ; 8(1): 4385, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29531353

RESUMEN

The rising prevalence of chronic liver disease, coupled with a permanent shortage of organs for liver transplantation, has sparked enormous interest in alternative treatment strategies. Previous protocols to generate hepatocyte-like cells (HLCs) via pancreas-to-liver transdifferentiation have utilised fetal bovine serum, introducing unknown variables and severely limiting study reproducibility. Therefore, the main goal of this study was to develop a protocol for transdifferentiation of pancreatic progenitor cells to HLCs in a chemically defined, serum-free culture medium. The clonal pancreatic progenitor cell line AR42J-B13 was cultured in basal growth medium on uncoated plastic culture dishes in the absence or presence of Dexamethasone on uncoated, laminin- or fibronectin-coated culture substrata, with or without serum supplementation. The hepatocytic differentiation potential was evaluated: (i) morphologically through bright-field and scanning electron microscopy, (ii) by assessing pancreatic and hepatic marker expression and (iii) by determining the function of HLCs through their ability to synthesise glycogen or take up and release indocyanine green. Here we demonstrate for the first time that transdifferentiation of pancreatic cells to HLCs is not dependent on serum. These results will assist in converting current differentiation protocols into procedures that are compliant with clinical use in future cell-based therapies to treat liver-related metabolic disorders.


Asunto(s)
Transdiferenciación Celular , Proteínas de la Matriz Extracelular/farmacología , Hepatocitos/citología , Páncreas/citología , Biomarcadores/análisis , Técnicas de Cultivo de Célula/métodos , Línea Celular , Fibronectinas/metabolismo , Humanos , Laminina/metabolismo , Hepatopatías/terapia , Microscopía Electrónica , Suero , Células Madre/citología
9.
Pharmaceuticals (Basel) ; 10(4)2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28974047

RESUMEN

Heparin mimetics are synthetic and semi-synthetic compounds that are highly sulfated, structurally distinct analogues of glycosaminoglycans. These mimetics are often rationally designed to increase potency and binding selectivity towards specific proteins involved in disease manifestations. Some of the major therapeutic arenas towards which heparin mimetics are targeted include: coagulation and thrombosis, cancers, and inflammatory diseases. Although Fondaparinux, a rationally designed heparin mimetic, is now approved for prophylaxis and treatment of venous thromboembolism, the search for novel anticoagulant heparin mimetics with increased affinity and fewer side effects remains a subject of research. However, increasingly, research is focusing on the non-anticoagulant activities of these molecules. Heparin mimetics have potential as anti-cancer agents due to their ability to: (1) inhibit heparanase, an endoglycosidase which facilitates the spread of tumor cells; and (2) inhibit angiogenesis by binding to growth factors. The heparin mimetic, PI-88 is in clinical trials for post-surgical hepatocellular carcinoma and advanced melanoma. The anti-inflammatory properties of heparin mimetics have primarily been attributed to their ability to interact with: complement system proteins, selectins and chemokines; each of which function differently to facilitate inflammation. The efficacy of low/non-anticoagulant heparin mimetics in animal models of different inflammatory diseases has been demonstrated. These findings, plus clinical data that indicates heparin has anti-inflammatory activity, will raise the momentum for developing heparin mimetics as a new class of therapeutic agent for inflammatory diseases.

10.
J Tissue Eng Regen Med ; 11(11): 3178-3192, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-27878977

RESUMEN

Human adult skeletal muscle has a limited ability to regenerate after injury and therapeutic options for volumetric muscle loss are few. Technologies to enhance regeneration of tissues generally rely upon bioscaffolds to mimic aspects of the tissue extracellular matrix (ECM). In the present study, silk fibroins from four Lepidoptera (silkworm) species engineered into three-dimensional scaffolds were examined for their ability to support the differentiation of primary human skeletal muscle myoblasts. Human skeletal muscle myoblasts (HSMMs) adhered, spread and deposited extensive ECM on all the scaffolds, but immunofluorescence and quantitative polymerase chain reaction analysis of gene expression revealed that myotube formation occurred differently on the various scaffolds. Bombyx mori fibroin scaffolds supported formation of long, well-aligned myotubes, whereas on Antheraea mylitta fibroin scaffolds the myotubes were thicker and shorter. Myotubes were oriented in two perpendicular layers on Antheraea assamensis scaffolds, and scaffolds of Philosamia/Samia ricini (S. ricini) fibroin poorly supported myotube formation. These differences were not caused by fibroin composition per se, as HSMMs adhered to, proliferated on and formed striated myotubes on all four fibroins presented as two-dimensional fibroin films. The Young's modulus of A. mylitta and B. mori scaffolds mimicked that of normal skeletal muscle, but A. assamensis and S. ricini scaffolds were more flexible. The present study demonstrates that although myoblasts deposit matrix onto fibroin scaffolds and create a permissive environment for cell proliferation, a scaffold elasticity resembling that of normal muscle is required for optimal myotube length, alignment, and maturation. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. StartCopTextStartCopText© 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.


Asunto(s)
Diferenciación Celular , Matriz Extracelular/química , Fibroínas/química , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo , Andamios del Tejido/química , Células Cultivadas , Elasticidad , Humanos , Músculo Esquelético/citología , Mioblastos Esqueléticos/citología
11.
Respirology ; 21(3): 438-48, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26804630

RESUMEN

Epithelial cells represent the most important surface of contact in the body and form the first line of defence of the body to external environment. Consequently, epithelia have numerous roles in order to maintain a homeostatic defence barrier. Although the epithelium has been extensively studied over several decades, it remains the focus of new research, indicating a lack of understanding that continues to exist around these cells in specific disease settings. Importantly, evidence is emerging that airway epithelial cells in particular have varied complex functions rather than simple passive roles. One area of current interest is its role following injury. In particular, the epithelial-specific cellular mechanisms regulating their migration during wound repair remain poorly understood and remain an area that requires much needed investigation. A better understanding of the physiological, cellular and molecular wound repair mechanisms could assist in elucidating pathological processes that contribute to airway epithelial pathology. This review attempts to highlight migration-specific and cell-extracellular matrix (ECM) aspects of repair used by epithelial cells under normal and disease settings, in the context of human airways.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/inmunología , Inmunidad Celular , Mucosa Respiratoria/fisiología , Enfermedades Respiratorias/inmunología , Enfermedades Respiratorias/patología , Humanos , Mucosa Respiratoria/citología
13.
PLoS One ; 10(6): e0127675, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26030912

RESUMEN

Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates.


Asunto(s)
Matriz Extracelular/metabolismo , Músculo Esquelético/citología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Animales , Western Blotting , Diferenciación Celular , Línea Celular , Proliferación Celular , Uniones Célula-Matriz , Colágeno Tipo IV/metabolismo , Medio de Cultivo Libre de Suero , Electroforesis en Gel de Poliacrilamida , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Fibronectinas/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Fosfolipasas A2 Grupo II/metabolismo , Ratones Endogámicos C57BL , Desarrollo de Músculos , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Andamios del Tejido
14.
J Biol Chem ; 290(25): 15421-15436, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25907556

RESUMEN

Interactions between chemokines such as CCL5 and glycosaminoglycans (GAGs) are essential for creating haptotactic gradients to guide the migration of leukocytes into inflammatory sites, and the GAGs that interact with CCL5 with the highest affinity are heparan sulfates/heparin. The interaction between CCL5 and its receptor on monocytes, CCR1, is mediated through residues Arg-17 and -47 in CCL5, which overlap with the GAG-binding (44)RKNR(47) "BBXB" motifs. Here we report that heparin and tetrasaccharide fragments of heparin are able to inhibit CCL5-CCR1 binding, with IC50 values showing strong dependence on the pattern and extent of sulfation. Modeling of the CCL5-tetrasaccharide complexes suggested that interactions between specific sulfate and carboxylate groups of heparin and residues Arg-17 and -47 of the protein are essential for strong inhibition; tetrasaccharides lacking the specific sulfation pattern were found to preferentially bind CCL5 in positions less favorable for inhibition of the interaction with CCR1. Simulations of a 12-mer heparin fragment bound to CCL5 indicated that the oligosaccharide preferred to interact simultaneously with both (44)RKNR(47) motifs in the CCL5 homodimer and engaged residues Arg-47 and -17 from both chains. Direct engagement of these residues by the longer heparin oligosaccharide provides a rationalization for its effectiveness as an inhibitor of CCL5-CCR1 interaction. In this mode, histidine (His-23) may contribute to CCL5-GAG interactions when the pH drops just below neutral, as occurs during inflammation. Additionally, an examination of the contribution of pH to modulating CCL5-heparin interactions suggested a need for careful interpretation of experimental results when experiments are performed under non-physiological conditions.


Asunto(s)
Quimiocina CCL5/química , Heparina/química , Oligosacáridos/química , Secuencias de Aminoácidos , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Heparina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Oligosacáridos/metabolismo , Unión Proteica , Receptores CCR1/química , Receptores CCR1/genética , Receptores CCR1/metabolismo
16.
Front Oncol ; 3: 252, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24069584

RESUMEN

The majority of patients diagnosed with melanoma present with thin lesions and generally these patients have a good prognosis. However, 5% of patients with early melanoma (<1 mm thick) will have recurrence and die within 10 years, despite no evidence of local or metastatic spread at the time of diagnosis. Thus, there is a need for additional prognostic markers to help identify those patients that may be at risk of recurrent disease. Many studies and several meta-analyses have compared gene and protein expression in melanocytes, naevi, primary, and metastatic melanoma in an attempt to find informative prognostic markers for these patients. However, although a large number of putative biomarkers have been described, few of these molecules are informative when used in isolation. The best approach is likely to involve a combination of molecules. We believe one approach could be to analyze the expression of a group of interacting proteins that regulate different aspects of the metastatic pathway. This is because a primary lesion expressing proteins involved in multiple stages of metastasis may be more likely to lead to secondary disease than one that does not. This review focuses on five putative biomarkers - melanoma cell adhesion molecule (MCAM), galectin-3 (gal-3), matrix metalloproteinase 2 (MMP-2), chondroitin sulfate proteoglycan 4 (CSPG4), and paired box 3 (PAX3). The goal is to provide context around what is known about the contribution of these biomarkers to melanoma biology and metastasis. Although each of these molecules have been independently identified as likely biomarkers, it is clear from our analyses that each are closely linked with each other, with intertwined roles in melanoma biology.

17.
J Tissue Eng Regen Med ; 7(10): 757-66, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22467423

RESUMEN

Liver progenitor cells (LPCs) are a promising source of cells to treat liver disease by cell therapy, due to their capability for self-replication and bipotentiality. In order to establish useful culture systems of LPCs and apply them to future clinical therapies, it is necessary to understand their interactions with their microenvironment and especially with the extracellular matrix (ECM). There is considerable evidence from in vivo studies that matrix proteins affect the activation, expansion, migration and differentiation of LPCs, but the information on the role that specific ECMs play in regulating LPCs in vitro is more limited. Nevertheless, current studies suggest that laminin, collagen type III, collagen type IV and hyaluronic acid help to maintain the undifferentiated phenotype of LPCs and promote their proliferation when cultured in media supplemented with growth factors chosen for LPC expansion, whereas collagen type I and fibronectin are generally associated with a differentiated phenotype under the same conditions. Experimental evidence suggests that α6ß1 and α5ß1 integrins as well as CD44 on the surface of LPCs, and their related downstream signals, are important mediators of interactions between LPCs and the ECM. The interactions of LPCs with the ECM form the focus of this review and the contribution of ECM molecules to strategies for optimizing in vitro LPC cultures for therapeutic applications is discussed.


Asunto(s)
Comunicación Celular , Matriz Extracelular/metabolismo , Hígado/citología , Células Madre/citología , Animales , Técnicas de Cultivo de Célula , Humanos , Células Madre/fisiología
18.
Handb Exp Pharmacol ; (207): 361-83, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22566233

RESUMEN

Explorations of the therapeutic potential of heparin mimetics, anionic compounds that are analogues of glycosaminoglycans (GAGs), have gone hand-in-hand with the emergence of understanding as to the role of GAGs in many essential biological processes. A myriad of structurally different heparin mimetics have been prepared and examined in many diverse applications. They range in complexity from heterogeneous polysaccharides that have been chemically sulphated to well-defined compounds, designed in part to mimic the natural ligand, but with binding specificity and potency increased by conjugation to non-carbohydrate pharmacophores. The maturity of the field is illustrated by the seven heparin mimetics that have achieved marketing approval and there are several more in late-stage clinical development. An overview of the structural determinants of heparin mimetics is presented together with an indication of their activities. The challenges in developing heparin mimetics as drugs, specificity and potential toxicity issues, are highlighted. Finally, the development path of three structurally very different mimetics, PI-88(®), GMI-1070 and RGTAs, each of which is in clinical trials, is described.


Asunto(s)
Heparina/química , Imitación Molecular , Heparina/uso terapéutico , Estructura Molecular
19.
Int J Cell Biol ; 2012: 340296, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22272201

RESUMEN

Metastasis is a major clinical problem and results in a poor prognosis for most cancers. The metastatic pathway describes the process by which cancer cells give rise to a metastatic lesion in a new tissue or organ. It consists of interconnecting steps all of which must be successfully completed to result in a metastasis. Cell-cell adhesion is a key aspect of many of these steps. Adhesion molecules belonging to the immunoglobulin superfamily (Ig-SF) commonly play a central role in cell-cell adhesion, and a number of these molecules have been associated with cancer progression and a metastatic phenotype. Surprisingly, the contribution of Ig-SF members to metastasis has not received the attention afforded other cell adhesion molecules (CAMs) such as the integrins. Here we examine the steps in the metastatic pathway focusing on how the Ig-SF members, melanoma cell adhesion molecule (MCAM), L1CAM, neural CAM (NCAM), leukocyte CAM (ALCAM), intercellular CAM-1 (ICAM-1) and platelet endothelial CAM-1 (PECAM-1) could play a role. Although much remains to be understood, this review aims to raise the profile of Ig-SF members in metastasis formation and prompt further research that could lead to useful clinical outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA