RESUMEN
The field of microbial ecology, evolution, and biodiversity (EEB) is at the leading edge of understanding how microbes shape our biosphere and influence the well-being of humankind and Earth. To that end, EEB is developing new transdisciplinary tools to analyze these ecologically critical, complex microbial communities. The American Society for Microbiology's Council on Microbial Sciences hosted a virtual retreat in 2023 to discuss the trajectory of EEB both within the Society and microbiology writ large. The retreat emphasized the interconnectedness of microbes and their outsized global influence on environmental and host health. The maximal potential impact of EEB will not be achieved without contributions from disparate fields that unite diverse technologies and data sets. In turn, this level of transdisciplinary efforts requires actively encouraging "broad" research, spanning inclusive global collaborations that incorporate both scientists and the public. Together, the American Society for Microbiology and EEB are poised to lead a paradigm shift that will result in a new era of collaboration, innovation, and societal relevance for microbiology.
RESUMEN
A Pacific native lineage of Vibrio parahaemolyticus ST36 serotype O4:K12 was introduced into the Atlantic, which increased local source illnesses. To identify genetic determinants of virulence and ecological resiliency and track their transfer into endemic populations, we constructed a complete genome of a 2013 Atlantic-traced clinical isolate by hybrid assembly.
RESUMEN
Elexacaftor/tezacaftor/ivacaftor (ETI) therapy has revolutionized the treatment of cystic fibrosis (CF) for most affected individuals but the effects of treatment on sinus microbiota are still unknown. Changes to the airway microbiota in CF are associated with disease state and alterations to the bacterial community after ETI initiation may require changes to clinical management regimens. We collected sinus swab samples from the middle meatus in an observational study of 38 adults with CF and chronic rhinosinusitis (CRS) from 2017 to 2021 and captured the initiation of ETI therapy. We performed 16S and custom amplicon sequencing to characterize the sinus microbiota pre- and post-ETI. Real-time quantitative PCR (RT-qPCR) was performed to estimate total bacterial abundance. Sinus samples from people with CF (pwCF) clustered into three community types, dependent on the dominant bacterial organism: a Pseudomonas-dominant, Staphylococcus-dominant, and mixed dominance cluster. Shannon's diversity index was low and not significantly altered post-ETI. Total bacterial load was not significantly lowered post-ETI. Pseudomonas spp. abundance was significantly reduced post-ETI, but eradication was not observed. Staphylococcus spp. became the dominant organism in most individuals post-ETI and we showed the presence of methicillin-resistant Staphylococcus aureus (MRSA) in the sinus both pre- and post-ETI. We also demonstrated that the sinus microbiome is predictive of the presence of Pseudomonas spp., Staphylococcus spp., and Serratia spp. in the sputum. Pseudomonas spp. and Staphylococcus spp., including MRSA, persist in the sinuses of pwCF after ETI therapy, indicating that these pathogens will continue to be important in CF airway disease management in the era of highly effective modulator therapies (HEMT).IMPORTANCEHighly effective modulator therapies (HEMT), such as elexacaftor/tezacaftor/ivacaftor (ETI), for cystic fibrosis (CF) have revolutionized patient care and quality of life for most affected individuals. The effects of these therapies on the microbiota of the airways are still unclear, though work has already been published on changes to microbiota in the sputum. Our study presents evidence for reduced relative abundance of Pseudomonas spp. in the sinuses following ETI therapy. We also show that Staphylococcus spp. becomes the dominant organism in the sinus communities of most individuals in this cohort after ETI therapy. We identified methicillin-resistant Staphylococcus aureus (MRSA) in the sinus microbiota both pre- and post-therapy. These findings demonstrate that pathogen monitoring and treatment will remain a vital part of airway disease management for people with cystic fibrosis (pwCF) in the era of HEMT.
Asunto(s)
Aminofenoles , Benzodioxoles , Fibrosis Quística , Combinación de Medicamentos , Indoles , Microbiota , Quinolonas , Humanos , Fibrosis Quística/microbiología , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/complicaciones , Aminofenoles/uso terapéutico , Benzodioxoles/uso terapéutico , Quinolonas/uso terapéutico , Femenino , Adulto , Masculino , Indoles/uso terapéutico , Microbiota/efectos de los fármacos , Sistema Respiratorio/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/efectos de los fármacos , Pirroles/uso terapéutico , Sinusitis/microbiología , Sinusitis/tratamiento farmacológico , Pirazoles/uso terapéutico , Adulto Joven , Piridinas/uso terapéutico , Pseudomonas/efectos de los fármacos , Pseudomonas/aislamiento & purificación , Pseudomonas/genética , Persona de Mediana Edad , PirrolidinasRESUMEN
Understanding the specific movements of bacteria isolated from human feces can serve as a novel diagnostic and therapeutic tool for inflammatory bowel disease. Here, we present a protocol for a microbial swarming assay and to isolate the bacteria responsible for swarming activity. We describe steps for identifying bacteria using MALDI-TOF mass spectrometry and whole-genome sequencing. We then detail procedures for validating findings by observing the same swarming phenotype upon reperforming the swarming assay. For complete details on the use and execution of this protocol, please refer to De et al.1.
Asunto(s)
Bacterias , Heces , Humanos , Heces/microbiología , Bacterias/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuenciación Completa del Genoma/métodosRESUMEN
Today, more than 90% of people with cystic fibrosis (pwCF) are eligible for the highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy called elexacaftor/tezacaftor/ivacaftor (ETI) and its use is widespread. Given the drastic respiratory symptom improvement experienced by many post-ETI, clinical studies are already underway to reduce the number of respiratory therapies, including antibiotic regimens, that pwCF historically relied on to combat lung disease progression. Early studies suggest that bacterial burden in the lungs is reduced post-ETI, yet it is unknown how chronic Pseudomonas aeruginosa populations are impacted by ETI. We found that pwCF remain infected throughout their upper and lower respiratory tract with their same strain of P. aeruginosa post-ETI, and these strains continue to evolve in response to the newly CFTR-corrected airway. Our work underscores the continued importance of CF airway microbiology in the new era of highly effective CFTR modulator therapy. IMPORTANCE: The highly effective cystic fibrosis transmembrane conductance regulator modulator therapy Elexakaftor/Tezacaftor/Ivacaftor (ETI) has changed cystic fibrosis (CF) disease for many people with cystic fibrosis. While respiratory symptoms are improved by ETI, we found that people with CF remain infected with Pseudomonas aeruginosa. How these persistent and evolving bacterial populations will impact the clinical manifestations of CF in the coming years remains to be seen, but the role and potentially changing face of infection in CF should not be discounted in the era of highly effective modulator therapy.
Asunto(s)
Aminofenoles , Benzodioxoles , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Combinación de Medicamentos , Indoles , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Quinolonas , Fibrosis Quística/microbiología , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/complicaciones , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Aminofenoles/uso terapéutico , Quinolonas/uso terapéutico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Benzodioxoles/uso terapéutico , Indoles/uso terapéutico , Pirazoles/uso terapéutico , Pirroles/uso terapéutico , Piridinas/uso terapéutico , Tiofenos/uso terapéutico , Tiofenos/farmacología , Femenino , QuinolinasRESUMEN
Burkholderia spp. are often resistant to antibiotics, and infections with these organisms are difficult to treat. A potential alternative treatment for Burkholderia spp. infections is bacteriophage (phage) therapy; however, it can be difficult to locate phages that target these bacteria. Prophages incorporated into the bacterial genome have been identified within Burkholderia spp. and may represent a source of useful phages for therapy. Here, we investigate whether prophages within Burkholderia spp. clinical isolates can kill conspecific and heterospecific isolates. Thirty-two Burkholderia spp. isolates were induced for prophage release, and harvested phages were tested for lytic activity against the same 32 isolates. Temperate phages were passaged and their host ranges were determined, resulting in four unique phages of prophage origin that showed different ranges of lytic activity. We also analyzed the prophage content of 35 Burkholderia spp. clinical isolate genomes and identified several prophages present in the genomes of multiple isolates of the same species. Finally, we observed that Burkholdera cenocepacia isolates were more phage-susceptible than Burkholderia multivorans isolates. Overall, our findings suggest that prophages present within Burkholderia spp. genomes are a potentially useful starting point for the isolation and development of novel phages for use in phage therapy.
Asunto(s)
Bacteriófagos , Infecciones por Burkholderia , Complejo Burkholderia cepacia , Burkholderia , Humanos , Profagos/genética , Genoma Viral , Burkholderia/genética , Complejo Burkholderia cepacia/genéticaRESUMEN
Burkholderia spp. are often resistant to antibiotics, and infections with these organisms are difficult to treat. A potential alternative treatment for Burkholderia spp. infections is bacteriophage (phage) therapy; however, it can be difficult to locate phages that target these bacteria. Prophages incorporated into the bacterial genome have been identified within Burkholderia spp. and may represent a source of useful phages for therapy. Here we investigate whether prophages within Burkholderia spp. clinical isolates can kill conspecific and heterospecific isolates. Thirty-two Burkholderia spp. isolates were induced for prophage release, and harvested prophages were tested for lytic activity against the same 32 isolates. Lytic phages were passaged and their host ranges were determined, resulting in four unique phages of prophage origin that showed different ranges of lytic activity. We also analyzed the prophage content of 35 Burkholderia spp. clinical isolate genomes, and identified several prophages present in the genomes of multiple isolates of the same species. Finally, we observed that B. cenocepacia isolates were more phage-susceptible than Burkholderia multivorans isolates. Overall, our findings suggest that prophages present within Burkholderia spp. genomes are a potentially useful starting point for the isolation and development of novel phages for use in phage therapy.
RESUMEN
BACKGROUND: While the widespread initiation of elexacaftor/tezacaftor/ivacaftor (ETI) has led to dramatic clinical improvements among persons with cystic fibrosis (pwCF), little is known about how ETI affects the respiratory mucosal inflammatory and physiochemical environment, or how these changes relate to lung function. METHODS: We performed a prospective, longitudinal study of adults with CF and chronic rhinosinusitis (CF-CRS) followed at our CF center (n = 18). Endoscopic upper respiratory tract (paranasal sinus) aspirates from multiple visit dates, both pre- and post-ETI initiation, were collected and tested for cytokines, metals, pH, and lactate levels. Generalized estimating equations were used to identify relationships between ETI and upper respiratory tract (URT) biomarker levels, and between URT biomarkers and lung function or clinical sinus parameters. RESULTS: ETI was associated with decreased upper respiratory mucosal cytokines B-cell activating factor (BAFF), IL-12p40, IL-32, IL-8, IL-22 and soluble tumor necrosis factor-1 (sTNFR1), and an increase in a proliferation-inducing ligand (APRIL) and IL-19. ETI was also associated with decreased URT levels of copper, manganese, and zinc. In turn, lower URT levels of BAFF, IL-8, lactate, and potassium were each associated with ~1.5% to 4.3% improved forced expiratory volume in 1 s (FEV1), while higher levels of IFNγ, iron, and selenium were associated with ~2% to 10% higher FEV1. CONCLUSIONS: Our observations suggest a dampening of inflammatory signals and restriction in microbial nutrients in the upper respiratory tract with ETI. These findings improve our understanding of how ETI impacts the mucosal environment in the respiratory tract, and may give insight into the improved infectious and inflammatory status and the resulting clinical improvements seen in pwCF.
Asunto(s)
Aminofenoles , Benzodioxoles , Fibrosis Quística , Quinolonas , Mucosa Respiratoria , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/fisiopatología , Fibrosis Quística/complicaciones , Femenino , Masculino , Estudios Prospectivos , Adulto , Aminofenoles/uso terapéutico , Quinolonas/uso terapéutico , Mucosa Respiratoria/efectos de los fármacos , Estudios Longitudinales , Benzodioxoles/uso terapéutico , Adulto Joven , Citocinas , Sinusitis/tratamiento farmacológico , Rinitis/tratamiento farmacológico , Indoles/uso terapéutico , Combinación de Medicamentos , Enfermedad Crónica , Piridinas/uso terapéutico , Biomarcadores/análisis , Inflamación/tratamiento farmacológicoRESUMEN
Streptococcus pneumoniae is a major human pathogen of global health concern and the rapid emergence of antibiotic resistance poses a serious public health problem worldwide. Fluoroquinolone resistance in S. pneumoniae is an intriguing case because the prevalence of fluoroquinolone resistance does not correlate with increasing usage and has remained rare. Our data indicate that deleterious fitness costs in the mammalian host constrain the emergence of fluoroquinolone resistance both by de novo mutation and recombination. S. pneumoniae was able to circumvent such deleterious fitness costs via the development of antibiotic tolerance through metabolic adaptation that reduced the production of reactive oxygen species, resulting in a fitness benefit during infection of mice treated with fluoroquinolones. These data suggest that the emergence of fluoroquinolone resistance is tightly constrained in S. pneumoniae by fitness tradeoffs and that mutational pathways involving metabolic networks to enable tolerance phenotypes are an important contributor to the evasion of antibiotic-mediated killing.IMPORTANCEThe increasing prevalence of antibiotic resistant bacteria is a major global health concern. While many species have the potential to develop antibiotic resistance, understanding the barriers to resistance emergence in the clinic remains poorly understood. A prime example of this is fluroquinolone resistance in Streptococcus pneumoniae, whereby, despite continued utilization, resistance to this class of antibiotic remains rare. In this study, we found that the predominant pathways for developing resistance to this antibiotic class severely compromised the infectious capacity of the pneumococcus, providing a key impediment for the emergence of resistance. Using in vivo models of experimental evolution, we found that S. pneumoniae responds to repeated fluoroquinolone exposure by modulating key metabolic pathways involved in the generation of redox molecules, which leads to antibiotic treatment failure in the absence of appreciable shifts in resistance levels. These data underscore the complex pathways available to pathogens to evade antibiotic mediating killing via antibiotic tolerance.
Asunto(s)
Fluoroquinolonas , Infecciones Neumocócicas , Humanos , Animales , Ratones , Fluoroquinolonas/farmacología , Streptococcus pneumoniae/metabolismo , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/microbiología , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/metabolismo , MamíferosRESUMEN
IMPORTANCE: An understanding of the processes that contribute to the emergence of pathogens from environmental reservoirs is critical as changing climate precipitates pathogen evolution and population expansion. Phylogeographic analysis of Vibrio parahaemolyticus hosts combined with the analysis of their Inoviridae phage resolved ambiguities of diversification dynamics which preceded successful Atlantic invasion by the epidemiologically predominant ST36 lineage. It has been established experimentally that filamentous phage can limit host recombination, but here, we show that phage loss is linked to rapid bacterial host diversification during epidemic spread in natural ecosystems alluding to a potential role for ubiquitous inoviruses in the adaptability of pathogens. This work paves the way for functional analyses to define the contribution of inoviruses in the evolutionary dynamics of environmentally transmitted pathogens.
Asunto(s)
Bacteriófagos , Vibrio parahaemolyticus , Profagos , Vibrio parahaemolyticus/genética , Inoviridae , Ecosistema , Bacterias , Bacteriófagos/genéticaRESUMEN
We report here seven draft genomes of bacterial strains from two Danish wastewater facilities, two of which might be characterized as a new group within the Pseudomonas and Pseudochrobactrum genera, respectively. These genomes will provide useful references for understanding bacterial interactions and horizontal gene transfer within bacterial communities.
RESUMEN
Staphylococcus aureus is a major human pathogen that causes a variety of illnesses, ranging from minor skin and soft tissue infections to more severe systemic infections. Although the primary host immune response can typically clear bacterial infections, S. aureus is uniquely resistant to inflammation. For instance, our laboratory has determined that S. aureus is highly resistant to nitric oxide (NOâ ), an important component of the innate immune response that plays a role in both immunomodulatory and antibacterial processes. Additionally, NOâ and its derivatives can cause damage to S. aureus DNA, more specifically, deamination and/or oxidation of DNA bases; however, regulation and repair mechanisms of DNA in S. aureus are understudied. Thus, we hypothesize that several DNA repair mechanisms may account for the replication fidelity of S. aureus and may contribute to fitness in the presence of NOâ . Here, we show the role of several DNA repair mechanisms in S. aureus. More specifically, we found that recombinational repair genes recJ, recG, and polA may play a role in the repair of NOâ -induced replication fork collapses. We also show the role of the base excision repair pathway protein, MutY, in reducing NOâ -mediated mutagenesis. Overall, our results suggest that NOâ leads to DNA damage, which subsequently induces the activity of several DNA repair pathways, contributing to the replication fidelity and fitness of S. aureus.IMPORTANCEPathogenic bacteria must evolve various mechanisms in order to evade the host immune response that they are infecting. One aspect of the primary host immune response to an infection is the production of an inflammatory effector component, nitric oxide (NOâ ). Staphylococcus aureus has uniquely evolved a diverse array of strategies to circumvent the inhibitory activity of nitric oxide. One such mechanism by which S. aureus has evolved allows the pathogen to survive and maintain its genomic integrity in this environment. For instance, here, our results suggest that S. aureus employs several DNA repair pathways to ensure replicative fitness and fidelity under NOâ stress. Thus, our study presents evidence of an additional strategy that allows S. aureus to evade the cytotoxic effects of host NOâ .
RESUMEN
BACKGROUND: Chronic rhinosinusitis (CRS) is common in individuals with cystic fibrosis (CF) and is marked by chronic inflammation and episodes of infection that negatively impact quality of life. Several studies have shown that elexacaftor-tezacaftor-ivacaftor (ETI) improves symptoms and examination findings in CF-CRS. The current study determines the effect of ETI on the sinonasal microbiota in CF. METHODS: Sinonasal samples were collected under endoscopic visualization before and after starting ETI. Samples were subjected to 16S amplicon sequencing and sequences were processed with the QIIME2 pipeline with subsequent analysis using the vegan R-package. RESULTS: Twenty-nine individual baseline samples and 23 sample pairs pre-/post-ETI were available. At baseline, the cohort had samples dominated by Staphylococcus, and alpha diversity was lower than that of a published reference set of individuals without sinonasal disease. Individuals with prior sinus surgery had lower alpha diversity as measured by Shannon Index, Observed Richness, and Faith's phylogenetic diversity Index. Beta diversity differed between individuals with and without allergic rhinitis, with higher Staphylococcus abundance in those with allergic rhinitis. No change in alpha or beta diversity was seen after a median of 9 months on ETI. With ETI, the Pseudomonas genus and the genus containing Burkholderia decreased in samples containing these taxa at baseline. Pseudomonas abundance decreased with treatment as measured by qPCR. Core sinonasal microbiome members Staphylococcus, Corynebacterium, and Streptococcus were unchanged, while Moraxella increased with ETI. CONCLUSIONS: Treatment with ETI leads to a reduction in Pseudomonas abundance within the sinonasal microbiome of individuals with Pseudomonas at baseline.
RESUMEN
BACKGROUND & AIMS: The colonic epithelium requires continuous renewal by crypt resident intestinal stem cells (ISCs) and transit-amplifying (TA) cells to maintain barrier integrity, especially after inflammatory damage. The diet of high-income countries contains increasing amounts of sugar, such as sucrose. ISCs and TA cells are sensitive to dietary metabolites, but whether excess sugar affects their function directly is unknown. METHODS: Here, we used a combination of 3-dimensional colonoids and a mouse model of colon damage/repair (dextran sodium sulfate colitis) to show the direct effect of sugar on the transcriptional, metabolic, and regenerative functions of crypt ISCs and TA cells. RESULTS: We show that high-sugar conditions directly limit murine and human colonoid development, which is associated with a reduction in the expression of proliferative genes, adenosine triphosphate levels, and the accumulation of pyruvate. Treatment of colonoids with dichloroacetate, which forces pyruvate into the tricarboxylic acid cycle, restored their growth. In concert, dextran sodium sulfate treatment of mice fed a high-sugar diet led to massive irreparable damage that was independent of the colonic microbiota and its metabolites. Analyses on crypt cells from high-sucrose-fed mice showed a reduction in the expression of ISC genes, impeded proliferative potential, and increased glycolytic potential without a commensurate increase in aerobic respiration. CONCLUSIONS: Taken together, our results indicate that short-term, excess dietary sucrose can directly modulate intestinal crypt cell metabolism and inhibit ISC/TA cell regenerative proliferation. This knowledge may inform diets that better support the treatment of acute intestinal injury.
Asunto(s)
Colitis , Azúcares de la Dieta , Ratones , Humanos , Animales , Dextranos , Colitis/metabolismo , PiruvatosRESUMEN
BACKGROUND: There is increased interest in bacteriophage (phage) therapy to treat infections caused by antibiotic-resistant bacteria. A lung transplant recipient with cystic fibrosis and Burkholderia multivorans infection was treated with inhaled phage therapy for 7 days before she died. METHODS: Phages were given via nebulization through the mechanical ventilation circuit. Remnant respiratory specimens and serum were collected. We quantified phage and bacterial deoxyribonucleic acid (DNA) using quantitative polymerase chain reaction, and tested phage neutralization in the presence of patient serum. We performed whole genome sequencing and antibiotic and phage susceptibility testing on 15 B. multivorans isolates. Finally, we extracted lipopolysaccharide (LPS) from two isolates and visualized their LPS using gel electrophoresis. RESULTS: Phage therapy was temporally followed by a temporary improvement in leukocytosis and hemodynamics, followed by worsening leukocytosis on day 5, deterioration on day 7, and death on day 8. We detected phage DNA in respiratory samples after 6 days of nebulized phage therapy. Bacterial DNA in respiratory samples decreased over time, and no serum neutralization was detected. Isolates collected between 2001 and 2020 were closely related but differed in their antibiotic and phage susceptibility profiles. Early isolates were not susceptible to the phage used for therapy, while later isolates, including two isolates collected during phage therapy, were susceptible. Susceptibility to the phage used for therapy was correlated with differences in O-antigen profiles of an early versus a late isolate. CONCLUSIONS: This case of clinical failure of nebulized phage therapy highlights the limitations, unknowns, and challenges of phage therapy for resistant infections.
Asunto(s)
Infecciones por Burkholderia , Complejo Burkholderia cepacia , Fibrosis Quística , Terapia de Fagos , Femenino , Humanos , Antibacterianos/uso terapéutico , Infecciones por Burkholderia/tratamiento farmacológico , Fibrosis Quística/microbiología , ADN/uso terapéutico , Leucocitosis/tratamiento farmacológico , Lipopolisacáridos/uso terapéutico , Pulmón/microbiología , Receptores de Trasplantes , Resultado Fatal , AdultoRESUMEN
When microbes grow in foreign nutritional environments, selection may enrich mutations in unexpected pathways connecting growth and homeostasis. An evolution experiment designed to identify beneficial mutations in Burkholderia cenocepacia captured six independent nonsynonymous substitutions in the essential gene tilS, which modifies tRNAIle2 by adding a lysine to the anticodon for faithful AUA recognition. Further, five additional mutants acquired mutations in tRNAIle2, which strongly suggests that disrupting the TilS-tRNAIle2 interaction was subject to strong positive selection. Mutated TilS incurred greatly reduced enzymatic function but retained capacity for tRNAIle2 binding. However, both mutant sets outcompeted the wild type by decreasing the lag phase duration by ~3.5 h. We hypothesized that lysine demand could underlie fitness in the experimental conditions. As predicted, supplemental lysine complemented the ancestral fitness deficit, but so did the additions of several other amino acids. Mutant fitness advantages were also specific to rapid growth on galactose using oxidative overflow metabolism that generates redox imbalance, not resources favoring more balanced metabolism. Remarkably, 13 tilS mutations also evolved in the long-term evolution experiment with Escherichia coli, including four fixed mutations. These results suggest that TilS or unknown binding partners contribute to improved growth under conditions of rapid sugar oxidation at the predicted expense of translational accuracy. IMPORTANCE There is growing evidence that the fundamental components of protein translation can play multiple roles in maintaining cellular homeostasis. Enzymes that interact with transfer RNAs not only ensure faithful decoding of the genetic code but also help signal the metabolic state by reacting to imbalances in essential building blocks like free amino acids and cofactors. Here, we present evidence of a secondary function for the essential enzyme TilS, whose only prior known function is to modify tRNAIle(CAU) to ensure accurate translation. Multiple nonsynonymous substitutions in tilS, as well as its cognate tRNA, were selected in evolution experiments favoring rapid, redox-imbalanced growth. These mutations alone decreased lag phase and created a competitive advantage, but at the expense of most primary enzyme function. These results imply that TilS interacts with other factors related to the timing of exponential growth and that tRNA-modifying enzymes may serve multiple roles in monitoring metabolic health.
Asunto(s)
Aminoacil-ARNt Sintetasas , Nucleósidos de Pirimidina , Lisina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Nucleósidos de Pirimidina/metabolismo , Bacterias/genética , ARN de Transferencia/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Mutación , Aminoácidos/metabolismoRESUMEN
BACKGROUND: Sepsis is a common and deadly syndrome, accounting for more than 11 million deaths annually. To mature a deeper understanding of the host and pathogen mechanisms contributing to poor outcomes in sepsis, and thereby possibly inform new therapeutic targets, sophisticated, and expensive biorepositories are typically required. We propose that remnant biospecimens are an alternative for mechanistic sepsis research, although the viability and scientific value of such remnants are unknown. METHODS AND RESULTS: The Remnant Biospecimen Investigation in Sepsis study is a prospective cohort study of 225 adults (age ≥ 18 yr) presenting to the emergency department with community sepsis, defined as sepsis-3 criteria within 6 hours of arrival. The primary objective was to determine the scientific value of a remnant biospecimen repository in sepsis linked to clinical phenotyping in the electronic health record. We will study candidate multiomic readouts of sepsis biology, governed by a conceptual model, and determine the precision, accuracy, integrity, and comparability of proteins, small molecules, lipids, and pathogen sequencing in remnant biospecimens compared with paired biospecimens obtained according to research protocols. Paired biospecimens will include plasma from sodium-heparin, EDTA, sodium fluoride, and citrate tubes. CONCLUSIONS: The study has received approval from the University of Pittsburgh Human Research Protection Office (Study 21120013). Recruitment began on October 25, 2022, with planned release of primary results anticipated in 2024. Results will be made available to the public, the funders, critical care societies, laboratory medicine scientists, and other researchers.
RESUMEN
We performed whole genome sequencing on SARS-CoV-2 from 59 vaccinated individuals from southwest Pennsylvania who tested positive between February and September, 2021. A comparison of mutations among vaccine breakthrough cases to a time-matched control group identified potential adaptive responses of SARS-CoV-2 to vaccination.
Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Antivirales , COVID-19/epidemiología , COVID-19/prevención & control , Genómica , Humanos , Pennsylvania/epidemiología , SARS-CoV-2/genéticaRESUMEN
Staphylococcus aureus can complicate preceding viral infections, including influenza virus. A bacterial infection combined with a preceding viral infection, known as superinfection, leads to worse outcomes than a single infection. Most of the pulmonary infection literature focuses on the changes in immune responses to bacteria between homeostatic and virally infected lungs. However, it is unclear how much of an influence bacterial virulence factors have in single or superinfection. Staphylococcal species express a broad range of cell wall-anchored proteins (CWAs) that have roles in host adhesion, nutrient acquisition, and immune evasion. We screened the importance of these CWAs using mutants lacking individual CWAs in vivo in both bacterial pneumonia and influenza superinfection. In bacterial pneumonia, the lack of individual CWAs leads to various decreases in bacterial burden, lung damage, and immune infiltration into the lung. However, the presence of a preceding influenza infection partially abrogates the requirement for CWAs. In the screen, we found that the uncharacterized CWA S. aureus surface protein D (SasD) induced changes in both inflammatory and homeostatic lung markers. We further characterized a SasD mutant (sasD A50.1) in the context of pneumonia. Mice infected with sasD A50.1 have decreased bacterial burden, inflammatory responses, and mortality compared to wild-type S. aureus. Mice also have reduced levels of interleukin-1ß (IL-1ß), likely derived from macrophages. Reductions in IL-1ß transcript levels as well as increased macrophage viability point at differences in cell death pathways. These data identify a novel virulence factor for S. aureus that influences inflammatory signaling within the lung. IMPORTANCE Staphylococcus aureus is a common commensal bacterium that can cause severe infections, such as pneumonia. In the lung, viral infections increase the risk of staphylococcal pneumonia, leading to combined infections known as superinfections. The most common virus associated with S. aureus pneumonia is influenza, and superinfections lead to worse patient outcomes than either infection alone. While there is much known about how the immune system differs between healthy and virally infected lungs, the role of bacterial virulence factors in single and superinfection is less understood. The significance of our research is identifying bacterial components that play a role in the initiation of lung injury, which could lead to future therapies to prevent pulmonary single or superinfection with S. aureus.