Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Biol Chem ; 300(4): 107174, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499153

RESUMEN

AL amyloidosis is a life-threatening disease caused by deposition of immunoglobulin light chains. While the mechanisms underlying light chains amyloidogenesis in vivo remain unclear, several studies have highlighted the role that tissue environment and structural amyloidogenicity of individual light chains have in the disease pathogenesis. AL natural deposits contain both full-length light chains and fragments encompassing the variable domain (VL) as well as different length segments of the constant region (CL), thus highlighting the relevance that proteolysis may have in the fibrillogenesis pathway. Here, we investigate the role of major truncated species of the disease-associated AL55 light chain that were previously identified in natural deposits. Specifically, we study structure, molecular dynamics, thermal stability, and capacity to form fibrils of a fragment containing both the VL and part of the CL (133-AL55), in comparison with the full-length protein and its variable domain alone, under shear stress and physiological conditions. Whereas the full-length light chain forms exclusively amorphous aggregates, both fragments generate fibrils, although, with different kinetics, aggregate structure, and interplay with the unfragmented protein. More specifically, the VL-CL 133-AL55 fragment entirely converts into amyloid fibrils microscopically and spectroscopically similar to their ex vivo counterpart and increases the amorphous aggregation of full-length AL55. Overall, our data support the idea that light chain structure and proteolysis are both relevant for amyloidogenesis in vivo and provide a novel biocompatible model of light chain fibrillogenesis suitable for future mechanistic studies.


Asunto(s)
Amiloide , Cadenas Ligeras de Inmunoglobulina , Amiloide/metabolismo , Amiloide/química , Humanos , Cadenas Ligeras de Inmunoglobulina/metabolismo , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/genética , Simulación de Dinámica Molecular , Regiones Constantes de Inmunoglobulina/metabolismo , Regiones Constantes de Inmunoglobulina/genética , Regiones Constantes de Inmunoglobulina/química , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/metabolismo , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/patología , Cinética , Dominios Proteicos
2.
Protein Sci ; 33(3): e4931, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38380705

RESUMEN

The mechanism that converts native human transthyretin into amyloid fibrils in vivo is still a debated and controversial issue. Commonly, non-physiological conditions of pH, temperature, or organic solvents are used in in vitro models of fibrillogenesis of globular proteins. Transthyretin amyloid formation can be achieved under physiological conditions through a mechano-enzymatic mechanism involving specific serine proteases such as trypsin or plasmin. Here, we investigate S52P and L111M transthyretin variants, both causing a severe form of systemic amyloidosis mostly targeting the heart at a relatively young age with heterogeneous phenotype among patients. Our studies on thermodynamics show that both proteins are significantly less stable than other amyloidogenic variants. However, despite a similar thermodynamic stability, L111M variant seems to have enhanced susceptibility to cleavage and a lower tendency to form fibrils than S52P in the presence of specific proteases and biomechanical forces. Heparin strongly enhances the fibrillogenic capacity of L111M transthyretin, but has no effect on the S52P variant. Fibrillar seeds similarly affect the fibrillogenesis of both proteins, with a stronger effect on the L111M variant. According to our model of mechano-enzymatic fibrillogenesis, both full-length and truncated monomers, released after the first cleavage, can enter into fibrillogenesis or degradation pathways. Our findings show that the kinetics of the two processes can be affected by several factors, such as intrinsic amyloidogenicity due to the specific mutations, environmental factors including heparin and fibrillar seeds that significantly accelerate the fibrillogenic pathway.


Asunto(s)
Amiloidosis , Glicosaminoglicanos , Humanos , Prealbúmina/genética , Amiloidosis/genética , Amiloidosis/metabolismo , Amiloide/metabolismo , Heparina
3.
Biomolecules ; 13(8)2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37627330

RESUMEN

Mitochondrial dysfunction plays a pivotal role in numerous complex diseases. Understanding the molecular mechanisms by which the "powerhouse of the cell" turns into the "factory of death" is an exciting yet challenging task that can unveil new therapeutic targets. The mitochondrial matrix protein CyPD is a peptidylprolyl cis-trans isomerase involved in the regulation of the permeability transition pore (mPTP). The mPTP is a multi-conductance channel in the inner mitochondrial membrane whose dysregulated opening can ultimately lead to cell death and whose involvement in pathology has been extensively documented over the past few decades. Moreover, several mPTP-independent CyPD interactions have been identified, indicating that CyPD could be involved in the fine regulation of several biochemical pathways. To further enrich the picture, CyPD undergoes several post-translational modifications that regulate both its activity and interaction with its clients. Here, we will dissect what is currently known about CyPD and critically review the most recent literature about its involvement in neurodegenerative disorders, focusing on Alzheimer's Disease and Parkinson's Disease, supporting the notion that CyPD could serve as a promising therapeutic target for the treatment of such conditions. Notably, significant efforts have been made to develop CyPD-specific inhibitors, which hold promise for the treatment of such complex disorders.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Peptidil-Prolil Isomerasa F , Muerte Celular , Mitocondrias , Membranas Mitocondriales , Proteínas Mitocondriales
4.
Biomolecules ; 12(8)2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-36008960

RESUMEN

The plasma protein transthyretin (TTR), a transporter for thyroid hormones and retinol in plasma and cerebrospinal fluid, is responsible for the second most common type of systemic (ATTR) amyloidosis either in its wild type form or as a result of destabilizing genetic mutations that increase its aggregation propensity. The association between free calcium ions (Ca2+) and TTR is still debated, although recent work seems to suggest that calcium induces structural destabilization of TTR and promotes its aggregation at non-physiological low pH in vitro. We apply high-resolution NMR spectroscopy to investigate calcium binding to TTR showing the formation of labile interactions, which leave the native structure of TTR substantially unaltered. The effect of calcium binding on TTR-enhanced aggregation is also assessed at physiological pH through the mechano-enzymatic mechanism. Our results indicate that, even if the binding is weak, about 7% of TTR is likely to be Ca2+-bound in vivo and therefore more aggregation prone as we have shown that this interaction is able to increase the protein susceptibility to the proteolytic cleavage that leads to aggregation at physiological pH. These events, even if involving a minority of circulating TTR, may be relevant for ATTR, a pathology that takes several decades to develop.


Asunto(s)
Amiloidosis , Prealbúmina , Amiloidosis/metabolismo , Calcio/metabolismo , Humanos , Prealbúmina/química , Proteolisis
5.
Molecules ; 27(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35807552

RESUMEN

TAR DNA-binding protein 43 (TDP-43) forms intraneuronal cytoplasmic inclusions associated with amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. Its N-terminal domain (NTD) can dimerise/oligomerise with the head-to-tail arrangement, which is essential for function but also favours liquid-liquid phase separation and inclusion formation of full-length TDP-43. Using various biophysical approaches, we identified an alternative conformational state of NTD in the presence of Sulfobetaine 3-10 (SB3-10), with higher content of α-helical structure and tryptophan solvent exposure. NMR shows a highly mobile structure, with partially folded regions and ß-sheet content decrease, with a concomitant increase of α-helical structure. It is monomeric and reverts to native oligomeric NTD upon SB3-10 dilution. The equilibrium GdnHCl-induced denaturation shows a cooperative folding and a somewhat lower conformational stability. When the aggregation processes were compared with and without pre-incubation with SB3-10, but at the identical final SB3-10 concentration, a slower aggregation was found in the former case, despite the reversible attainment of the native conformation in both cases. This was attributed to protein monomerization and oligomeric seeds disruption by the conditions promoting the alternative conformation. Overall, the results show a high plasticity of TDP-43 NTD and identify strategies to monomerise TDP-43 NTD for methodological and biomedical applications.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Dimerización , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Agregado de Proteínas , Conformación Proteica en Lámina beta , Dominios Proteicos , Pliegue de Proteína
6.
Front Mol Biosci ; 9: 830006, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237660

RESUMEN

The globular to fibrillar transition of proteins represents a key pathogenic event in the development of amyloid diseases. Although systemic amyloidoses share the common characteristic of amyloid deposition in the extracellular matrix, they are clinically heterogeneous as the affected organs may vary. The observation that precursors of amyloid fibrils derived from circulating globular plasma proteins led to huge efforts in trying to elucidate the structural events determining the protein metamorphosis from their globular to fibrillar state. Whereas the process of metamorphosis has inspired poets and writers from Ovid to Kafka, protein metamorphism is a more recent concept. It is an ideal metaphor in biochemistry for studying the protein folding paradigm and investigating determinants of folding dynamics. Although we have learned how to transform both normal and pathogenic globular proteins into fibrillar polymers in vitro, the events occurring in vivo, are far more complex and yet to be explained. A major gap still exists between in vivo and in vitro models of fibrillogenesis as the biological complexity of the disease in living organisms cannot be reproduced at the same extent in the test tube. Reviewing the major scientific attempts to monitor the amyloidogenic metamorphosis of globular proteins in systems of increasing complexity, from cell culture to human tissues, may help to bridge the gap between the experimental models and the actual pathological events in patients.

7.
Phys Chem Chem Phys ; 23(40): 23158-23172, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34617942

RESUMEN

Herein, we compared the ability of linear and cyclic peptides generated in silico to target different protein sites: internal pockets and solvent-exposed sites. We selected human lysozyme (HuL) as a model target protein combined with the computational evolution of linear and cyclic peptides. The sequence evolution of these peptides was based on the PARCE algorithm. The generated peptides were screened based on their aqueous solubility and HuL binding affinity. The latter was evaluated by means of scoring functions and atomistic molecular dynamics (MD) trajectories in water, which allowed prediction of the structural features of the protein-peptide complexes. The computational results demonstrated that cyclic peptides constitute the optimal choice for solvent exposed sites, while both linear and cyclic peptides are capable of targeting the HuL pocket effectively. The most promising binders found in silico were investigated experimentally by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS) techniques. All tested peptides displayed dissociation constants in the micromolar range, as assessed by SPR; however, both NMR and ESI-MS suggested multiple binding modes, at least for the pocket binding peptides. A detailed NMR analysis confirmed that both linear and cyclic pocket peptides correctly target the binding site they were designed for.


Asunto(s)
Ligandos , Simulación de Dinámica Molecular , Muramidasa/química , Péptidos/química , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Muramidasa/metabolismo , Resonancia Magnética Nuclear Biomolecular , Péptidos/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Unión Proteica , Espectrometría de Masa por Ionización de Electrospray , Resonancia por Plasmón de Superficie
8.
J Pathol ; 255(3): 311-318, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34331462

RESUMEN

Apolipoprotein A-IV amyloidosis is an uncommon form of the disease normally resulting in renal and cardiac dysfunction. ApoA-IV amyloidosis was identified in 16 patients attending the National Amyloidosis Centre and in eight clinical samples received for histology review. Unexpectedly, proteomics identified the presence of ApoA-IV signal sequence residues (p.18-43 to p.20-43) in 16/24 trypsin-digested amyloid deposits but in only 1/266 non-ApoA-IV amyloid samples examined. These additional signal residues were also detected in the cardiac sample from the Swedish patient in which ApoA-IV amyloid was first described, and in plasma from a single cardiac ApoA-IV amyloidosis patient. The most common signal-containing peptide observed in ApoA-IV amyloid, p.20-43, and to a far lesser extent the N-terminal peptide, p.21-43, were fibrillogenic in vitro at physiological pH, generating Congo red-positive fibrils. The addition of a single signal-derived alanine residue to the N-terminus has resulted in markedly increased fibrillogenesis. If this effect translates to the mature circulating protein in vivo, then the presence of signal may result in preferential deposition as amyloid, perhaps acting as seed for the main circulating native form of the protein; it may also influence other ApoA-IV-associated pathologies. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Amiloidosis/patología , Apolipoproteínas A , Señales de Clasificación de Proteína , Anciano , Femenino , Humanos , Masculino , Placa Amiloide/patología
9.
J Biol Chem ; 295(33): 11379-11387, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32571879

RESUMEN

Systemic amyloidosis caused by extracellular deposition of insoluble fibrils derived from the pathological aggregation of circulating proteins, such as transthyretin, is a severe and usually fatal condition. Elucidation of the molecular pathogenic mechanism of the disease and discovery of effective therapies still represents a challenging medical issue. The in vitro preparation of amyloid fibrils that exhibit structural and biochemical properties closely similar to those of natural fibrils is central to improving our understanding of the biophysical basis of amyloid formation in vivo and may offer an important tool for drug discovery. Here, we compared the morphology and thermodynamic stability of natural transthyretin fibrils with those of fibrils generated in vitro either using the common acidification procedure or primed by limited selective cleavage by plasmin. The free energies for fibril formation were -12.36, -8.10, and -10.61 kcal mol-1, respectively. The fibrils generated via plasmin cleavage were more stable than those prepared at low pH and were thermodynamically and morphologically similar to natural fibrils extracted from human amyloidotic tissue. Determination of thermodynamic stability is an important tool that is complementary to other methods of structural comparison between ex vivo fibrils and fibrils generated in vitro Our finding that fibrils created via an in vitro amyloidogenic pathway are structurally similar to ex vivo human amyloid fibrils does not necessarily establish that the fibrillogenic pathway is the same for both, but it narrows the current knowledge gap between in vitro models and in vivo pathophysiology.


Asunto(s)
Neuropatías Amiloides Familiares/patología , Amiloide/química , Prealbúmina/química , Amiloide/genética , Amiloide/ultraestructura , Neuropatías Amiloides Familiares/genética , Humanos , Mutación , Prealbúmina/genética , Agregado de Proteínas , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Estabilidad Proteica , Termodinámica
10.
J Med Chem ; 62(17): 8274-8283, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31393717

RESUMEN

The wild type protein, transthyretin (TTR), and over 120 genetic TTR variants are amyloidogenic and cause, respectively, sporadic and hereditary systemic TTR amyloidosis. The homotetrameric TTR contains two identical thyroxine binding pockets, occupation of which by specific ligands can inhibit TTR amyloidogenesis in vitro. Ligand binding stabilizes the tetramer, inhibiting its proteolytic cleavage and its dissociation. Here, we show with solution-state NMR that ligand binding induces long-distance conformational changes in the TTR that have not previously been detected by X-ray crystallography, consistently with the inhibition of the cleavage of the DE loop. The NMR findings, coupled with surface plasmon resonance measurements, have identified dynamic exchange processes underlying the negative cooperativity of binding of "monovalent" ligand tafamidis. In contrast, mds84, our prototypic "bivalent" ligand, which is a more potent stabilizer of TTR in vitro that occupies both thyroxine pockets and the intramolecular channel between them, has greater structural effects.


Asunto(s)
Fenamatos/química , Prealbúmina/química , Sitios de Unión , Fenamatos/síntesis química , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Prealbúmina/síntesis química , Relación Estructura-Actividad
11.
J Biol Chem ; 293(37): 14192-14199, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30018138

RESUMEN

Systemic amyloidosis is a usually fatal disease caused by extracellular accumulation of abnormal protein fibers, amyloid fibrils, derived by misfolding and aggregation of soluble globular plasma protein precursors. Both WT and genetic variants of the normal plasma protein transthyretin (TTR) form amyloid, but neither the misfolding leading to fibrillogenesis nor the anatomical localization of TTR amyloid deposition are understood. We have previously shown that, under physiological conditions, trypsin cleaves human TTR in a mechano-enzymatic mechanism that generates abundant amyloid fibrils in vitro In sharp contrast, the widely used in vitro model of denaturation and aggregation of TTR by prolonged exposure to pH 4.0 yields almost no clearly defined amyloid fibrils. However, the exclusive duodenal location of trypsin means that this enzyme cannot contribute to systemic extracellular TTR amyloid deposition in vivo Here, we therefore conducted a bioinformatics search for systemically active tryptic proteases with appropriate tissue distribution, which unexpectedly identified plasmin as the leading candidate. We confirmed that plasmin, just as trypsin, selectively cleaves human TTR between residues 48 and 49 under physiological conditions in vitro Truncated and full-length protomers are then released from the native homotetramer and rapidly aggregate into abundant fibrils indistinguishable from ex vivo TTR amyloid. Our findings suggest that physiological fibrinolysis is likely to play a critical role in TTR amyloid formation in vivo Identification of this surprising intersection between two hitherto unrelated pathways opens new avenues for elucidating the mechanisms of TTR amyloidosis, for seeking susceptibility risk factors, and for therapeutic innovation.


Asunto(s)
Amiloidosis/metabolismo , Plasminógeno/metabolismo , Prealbúmina/metabolismo , Amiloide/metabolismo , Bases de Datos de Proteínas , Fibrinolisina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Desnaturalización Proteica , Pliegue de Proteína , Proteolisis , Tripsina/metabolismo
12.
Biomed Res Int ; 2018: 7480749, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967786

RESUMEN

Molecular dynamics simulations are used in this work to probe the structural stability and the dynamics of engineered mutants of transthyretin (TTR), i.e., the double mutant F87M/L110M (MT-TTR) and the triple mutant F87M/L110M/S117E (3M-TTR), in relation to wild-type. Free energy analysis from end-point simulations and statistical effective energy functions are used to analyze trajectories, revealing that mutations do not have major impact on protein structure but rather on protein association, shifting the equilibria towards dissociated species. The result is confirmed by the analysis of 3M-TTR which shows dissociation within the first 10 ns of the simulation, indicating that contacts are lost at the dimer-dimer interface, whereas dimers (formed by monomers which pair to form two extended ß-sheets) appear fairly stable. Overall the simulations provide a detailed view of the dynamics and thermodynamics of wild-type and mutant transthyretins and a rationale of the observed effects.


Asunto(s)
Mutación , Prealbúmina/química , Termodinámica , Sustancias Macromoleculares , Modelos Moleculares , Simulación de Dinámica Molecular , Prealbúmina/genética
13.
J Chem Inf Model ; 58(7): 1319-1324, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29897235

RESUMEN

Entropy calculation is an important step in the postprocessing of molecular dynamics trajectories or predictive models. In recent years the nearest neighbor method has emerged as a powerful method to deal in a flexible way with the dimensionality of the problem. Here we provide two programs, PBD2ENTROPY and PDB2TRENT that compute the conformational and translational-rotational entropy, respectively, based on the nearest neighbor method. PDB2ENTROPY takes in input two files containing the following: (1) conformational ensembles of the same molecule(s) in PDB format and (2) definitions of torsion angles (a default file is provided where additional user definitions can be easily implemented). PDB2TRENT takes in a file containing samples of the complexed molecules, a string specifying atoms providing the reference framework to superimpose samples, and a string specifying atoms used to compute rotation and translation of one molecule with respect to the other. The C programs and sample demonstration data are available on the GitHub repository (URL: http://github.com/federico-fogolari/pdb2entropy and http://github.com/federico-fogolari/pdb2trent ).


Asunto(s)
Simulación por Computador , Entropía , Modelos Moleculares , Benceno/química , Conformación Molecular , Muramidasa/química , Rotación , Programas Informáticos , Solventes/química
14.
Chem Commun (Camb) ; 54(43): 5422-5425, 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29737327

RESUMEN

Protein fibrillation is involved in many serious diseases, and protein oligomers are proved to be precursors of amyloid fibrils. NMR and QCMD experiments allowed us to establish that the interaction between citrate-stabilized gold nanoparticles and a paradigmatic amyloidogenic protein, ß2-microglobulin, is able to interfere with protein association into oligomers.


Asunto(s)
Ácido Cítrico/química , Oro/química , Nanopartículas del Metal/química , Microglobulina beta-2/química
15.
Nanoscale ; 10(10): 4793-4806, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29469914

RESUMEN

Protein aggregation including the formation of dimers and multimers in solution, underlies an array of human diseases such as systemic amyloidosis which is a fatal disease caused by misfolding of native globular proteins damaging the structure and function of affected organs. Different kind of interactors can interfere with the formation of protein dimers and multimers in solution. A very special class of interactors are nanoparticles thanks to the extremely efficient extension of their interaction surface. In particular citrate-coated gold nanoparticles (cit-AuNPs) were recently investigated with amyloidogenic protein ß2-microglobulin (ß2m). Here we present the computational studies on two challenging models known for their enhanced amyloidogenic propensity, namely ΔN6 and D76N ß2m naturally occurring variants, and disclose the role of cit-AuNPs on their fibrillogenesis. The proposed interaction mechanism lies in the interference of the cit-AuNPs with the protein dimers at the early stages of aggregation, that induces dimer disassembling. As a consequence, natural fibril formation can be inhibited. Relying on the comparison between atomistic simulations at multiple levels (enhanced sampling molecular dynamics and Brownian dynamics) and protein structural characterisation by NMR, we demonstrate that the cit-AuNPs interactors are able to inhibit protein dimer assembling. As a consequence, the natural fibril formation is also inhibited, as found in experiment.

16.
Front Mol Biosci ; 5: 11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29473043

RESUMEN

Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.

17.
Biomol NMR Assign ; 12(1): 69-77, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29030803

RESUMEN

Class A ß-lactamases have been widely used as versatile scaffolds to create hybrid (or chimeric) proteins for a series of applications ranging from basic research to medicine. We have, in particular, used the ß-lactamase BlaP from Bacillus licheniformis 749/C (BlaP) as a protein scaffold to create model polyglutamine (polyQ) proteins in order to better understand the mechanism(s) by which an expanded polyQ sequence triggers the formation of amyloid fibrils. The model chimeras were designed by inserting a polyQ sequence of various lengths at two different locations within BlaP (i.e. position 197 or position 216) allowing a detailed comparison of the effects of subtle differences in the environment of the polyQ sequence on its ability to trigger protein aggregation. In order to investigate the effects of the polyQ insertion at both positions on the structure, stability and dynamics of BlaP, a series of NMR experiments including H/D exchange are foreseen. Accordingly, as necessitated by these studies, here we report the NMR assignment of the wild-type BlaP (BlaP-WT) and of the two reference proteins, BlaP197Q0 and BlaP216Q0, wherein a Pro-Gly dipeptide has been introduced at position 197 and 216, respectively; this dipeptide originates from the addition of the Sma1 restriction site at the genetic level to allow further polyQ sequence insertion.


Asunto(s)
Bacillus licheniformis/enzimología , Proteínas Mutantes/química , Mutación , beta-Lactamasas/química , Proteínas Mutantes/genética , beta-Lactamasas/genética
18.
Mol Biosyst ; 13(12): 2625-2637, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29051937

RESUMEN

Hydrophobic surfaces are known to adsorb and unfold proteins, a process that has been studied only for a few proteins. Here we address the interaction of ß2-microglobulin, a paradigmatic protein for the study of amyloidogenesis, with hydrophobic surfaces. A system with 27 copies of the protein surrounded by a model cubic hydrophobic box is studied by implicit solvent molecular dynamics simulations. Most proteins adsorb on the walls of the box without major distortions in local geometry, whereas free molecules maintain proper structures and fluctuations as observed in explicit solvent molecular dynamics simulations. The major conclusions from the simulations are as follows: (i) the adopted implicit solvent model is adequate to describe protein dynamics and thermodynamics; (ii) adsorption occurs readily and is irreversible on the simulated timescale; (iii) the regions most involved in molecular encounters and stable interactions with the walls are the same as those that are important in protein-protein and protein-nanoparticle interactions; (iv) unfolding following adsorption occurs at regions found to be flexible by both experiments and simulations; (v) thermodynamic analysis suggests a very large contribution from van der Waals interactions, whereas unfavorable electrostatic interactions are not found to contribute much to adsorption energy. Surfaces with different degrees of hydrophobicity may occur in vivo. Our simulations show that adsorption is a fast and irreversible process which is accompanied by partial unfolding. The results and the thermodynamic analysis presented here are consistent with and rationalize previous experimental work.


Asunto(s)
Simulación de Dinámica Molecular , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Solventes/química , Termodinámica
19.
Sci Rep ; 7: 46711, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28429761

RESUMEN

Systemic amyloidosis is caused by misfolding and aggregation of globular proteins in vivo for which effective treatments are urgently needed. Inhibition of protein self-aggregation represents an attractive therapeutic strategy. Studies on the amyloidogenic variant of ß2-microglobulin, D76N, causing hereditary systemic amyloidosis, have become particularly relevant since fibrils are formed in vitro in physiologically relevant conditions. Here we compare the potency of two previously described inhibitors of wild type ß2-microglobulin fibrillogenesis, doxycycline and single domain antibodies (nanobodies). The ß2-microglobulin -binding nanobody, Nb24, more potently inhibits D76N ß2-microglobulin fibrillogenesis than doxycycline with complete abrogation of fibril formation. In ß2-microglobulin knock out mice, the D76N ß2-microglobulin/ Nb24 pre-formed complex, is cleared from the circulation at the same rate as the uncomplexed protein; however, the analysis of tissue distribution reveals that the interaction with the antibody reduces the concentration of the variant protein in the heart but does not modify the tissue distribution of wild type ß2-microglobulin. These findings strongly support the potential therapeutic use of this antibody in the treatment of systemic amyloidosis.


Asunto(s)
Amiloidosis/inmunología , Anticuerpos de Dominio Único/inmunología , Microglobulina beta-2/inmunología , Amiloide/efectos de los fármacos , Amiloide/inmunología , Amiloide/metabolismo , Amiloidosis/metabolismo , Amiloidosis/prevención & control , Animales , Línea Celular Tumoral , Doxiciclina/farmacocinética , Doxiciclina/farmacología , Humanos , Ratones de la Cepa 129 , Ratones Noqueados , Mutación Missense , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/prevención & control , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/farmacología , Distribución Tisular/efectos de los fármacos , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
20.
Nanoscale ; 9(11): 3941-3951, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28265615

RESUMEN

Nanoparticles have repeatedly been shown to enhance fibril formation when assayed with amyloidogenic proteins. Recently, however, evidence casting some doubt about the generality of this conclusion started to emerge. Therefore, to investigate further the influence of nanoparticles on the fibrillation process, we used a naturally occurring variant of the paradigmatic amyloidogenic protein ß2-microglobulin (ß2m), namely D76N ß2m where asparagine replaces aspartate at position 76. This variant is responsible for aggressive systemic amyloidosis. After characterizing the interaction of the variant with citrate-stabilized gold nanoparticles (Cit-AuNPs) by NMR and modeling, we analyzed the fibril formation by three different methods: thioflavin T fluorescence, native agarose gel electrophoresis and transmission electron microscopy. The NMR evidence indicated a fast-exchange interaction involving preferentially specific regions of the protein that proved, by subsequent modeling, to be consistent with a dimeric adduct interacting with Cit-AuNPs. The fibril detection assays showed that AuNPs are able to hamper D76N ß2m fibrillogenesis through an effective interaction that competes with protofibril formation or recruitment. These findings open promising perspectives for the optimization of the nanoparticle surface to design tunable interactions with proteins.


Asunto(s)
Ácido Cítrico , Oro , Nanopartículas del Metal , Microglobulina beta-2/química , Amiloide/química , Fluorescencia , Simulación del Acoplamiento Molecular , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA