Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
ACS Nano ; 18(24): 15468-15476, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833689

RESUMEN

Spin transition (ST) materials are attractive for developing photoswitchable devices, but their slow material transformations limit device applications. Size reduction could enable faster switching, but the photoinduced dynamics at the nanoscale remains poorly understood. Here, we report a femtosecond optical pump multimodal X-ray probe study of polymeric nanorods. Simultaneously tracking the ST order parameter with X-ray emission spectroscopy and structure with X-ray diffraction, we observe photodoping of the low-spin-lattice within ∼150 fs. Above a ∼16% photodoping threshold, the transition to the high-spin phase occurs following an incubation period assigned to vibrational energy redistribution within the nanorods activating the molecular spin switching. Above ∼60% photodoping, the incubation period disappears, and the transition completes within ∼50 ps, preceded by the elastic nanorod expansion in response to the photodoping. These results support the feasibility of ST material-based GHz optical switching applications.

2.
J Am Chem Soc ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889309

RESUMEN

To fully harness the potential of abundant metal coordination complex photosensitizers, a detailed understanding of the molecular properties that dictate and control the electronic excited-state population dynamics initiated by light absorption is critical. In the absence of detectable luminescence, optical transient absorption (TA) spectroscopy is the most widely employed method for interpreting electron redistribution in such excited states, particularly for those with a charge-transfer character. The assignment of excited-state TA spectral features often relies on spectroelectrochemical measurements, where the transient absorption spectrum generated by a metal-to-ligand charge-transfer (MLCT) electronic excited state, for instance, can be approximated using steady-state spectra generated by electrochemical ligand reduction and metal oxidation and accounting for the loss of absorptions by the electronic ground state. However, the reliability of this approach can be clouded when multiple electronic configurations have similar optical signatures. Using a case study of Fe(II) complexes supported by benzannulated diarylamido ligands, we highlight an example of such an ambiguity and show how time-resolved X-ray emission spectroscopy (XES) measurements can reliably assign excited states from the perspective of the metal, particularly in conjunction with accurate synthetic models of ligand-field electronic excited states, leading to a reinterpretation of the long-lived excited state as a ligand-field metal-centered quintet state. A detailed analysis of the XES data on the long-lived excited state is presented, along with a discussion of the ultrafast dynamics following the photoexcitation of low-spin Fe(II)-Namido complexes using a high-spin ground-state analogue as a spectral model for the 5T2 excited state.

3.
J Chem Phys ; 160(8)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415835

RESUMEN

A nitrogen K-edge x-ray absorption near-edge structure (XANES) survey is presented for tetrapyrido[3,2-a:2',3'-c:3″,2″-h:2‴,3‴-j]phenazine (tpphz)-bridged bimetallic assemblies that couple chromophore and catalyst transition metal complexes for light driven catalysis, as well as their individual molecular constituents. We demonstrate the high N site sensitivity of the N pre-edge XANES features, which are energetically well-separated for the phenazine bridge N atoms and for the individual metal-bound N atoms of the inner coordination sphere ligands. By comparison with the time-dependent density functional theory calculated spectra, we determine the origins of these distinguishable spectral features. We find that metal coordination generates large shifts toward higher energy for the metal-bound N atoms, with increasing shift for 3d < 4d < 5d metal bonding. This is attributed to increasing ligand-to-metal σ donation that increases the effective charge of the bound N atoms and stabilizes the N 1s core electrons. In contrast, the phenazine bridge N pre-edge peak is found at a lower energy due to stabilization of the low energy electron accepting orbital localized on the phenazine motif. While no sensitivity to ground state electronic coupling between the individual molecular subunits was observed, the spectra are sensitive to structural distortions of the tpphz bridge. These results demonstrate N K-edge XANES as a local probe of electronic structure in large bridging ligand motifs, able to distinctly investigate the ligand-centered orbitals involved in metal-to-ligand and ligand-to-ligand electron transfer following light absorption.

5.
J Chem Phys ; 158(7): 074703, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36813711

RESUMEN

A highly active heterogenized molecular CO2 reduction catalyst on a conductive carbon support is investigated to identify if its improved catalytic activity can be attributed to strong electronic interactions between catalyst and support. The molecular structure and electronic character of a [Re+1(tBu-bpy)(CO)3Cl] (tBu-bpy = 4,4'-tert-butyl-2,2'-bipyridine) catalyst deposited on multiwalled carbon nanotubes are characterized using Re L3-edge x-ray absorption spectroscopy under electrochemical conditions and compared to the homogeneous catalyst. The Re oxidation state is characterized from the near-edge absorption region, while structural changes of the catalyst are assessed from the extended x-ray absorption fine structure under reducing conditions. Chloride ligand dissociation and a Re-centered reduction are both observed under applied reducing potential. The results confirm weak coupling of [Re(tBu-bpy)(CO)3Cl] with the support, since the supported catalyst exhibits the same oxidation changes as the homogeneous case. However, these results do not preclude strong interactions between a reduced catalyst intermediate and the support, preliminarily investigated here using quantum mechanical calculations. Thus, our results suggest that complicated linkage schemes and strong electronic interactions with the initial catalyst species are not required to improve the activity of heterogenized molecular catalysts.

6.
Front Mol Biosci ; 9: 1048932, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36567947

RESUMEN

The high intensity of X-ray free electron lasers (XFELs) can damage solution-phase samples on every scale, ranging from the molecular or electronic structure of a sample to the macroscopic structure of a liquid microjet. By using a large surface area liquid sheet microjet as a sample target instead of a standard cylindrical microjet, the incident X-ray spot size can be increased such that the incident intensity falls below the damage threshold. This capability is becoming particularly important for high repetition rate XFELs, where destroying a target with each pulse would require prohibitively large volumes of sample. We present here a study of microfluidic liquid sheet dimensions as a function of liquid flow rate. Sheet lengths, widths and thickness gradients are shown for three styles of nozzles fabricated from isotropically etched glass. In-vacuum operation and sample recirculation using these nozzles is demonstrated. The effects of intense XFEL pulses on the structure of a liquid sheet are also briefly examined.

7.
Inorg Chem ; 61(26): 9868-9876, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35732599

RESUMEN

The protonation of several Ni-centered pyridine-2-thiolate photocatalysts for hydrogen evolution is investigated using X-ray absorption spectroscopy (XAS). While protonation of the pyridinethiolate ligand was previously thought to result in partial dechelation from the metal at the pyridyl N site, we instead observe complete dissociation of the protonated ligand and replacement by solvent molecules. A combination of Ni K-edge and S K-edge XAS of the catalyst Ni(bpy)(pyS)2 (bpy = 2,2'-bipyridine; pyS = pyridine-2-thiolate) identifies the structure of the fully protonated catalyst as a solvated [Ni(bpy)(DMF)4]2+ (DMF = dimethylformamide) complex and the dissociated ligands as the N-protonated 2-thiopyridone (pyS-H). This surprising result is further supported by UV-vis absorption spectroscopy and DFT calculations and is demonstrated for additional catalyst structures and solvent environments using a combination of XAS and UV-vis spectroscopy. Following protonation, electrochemical measurements indicate that the solvated Ni bipyridine complex acts as the primary electron-accepting species during photocatalysis, resulting in separate protonated ligand and reduced Ni species. The role of ligand dissociation is considered in the larger context of the hydrogen evolution reaction (HER) mechanism. As neither the pyS-H ligand nor the Ni bipyridine complex acts as an efficient HER catalyst alone, the critical role of ligand coordination is highlighted. This suggests that shifting the equilibrium toward bound species by addition of excess protonated ligand (2-thiopyridone) may improve the performance of pyridinethiolate-containing catalysts.


Asunto(s)
Compuestos Heterocíclicos , Hidrógeno , Hidrógeno/química , Ligandos , Modelos Moleculares , Solventes , Espectroscopía de Absorción de Rayos X
8.
Inorg Chem ; 61(4): 1961-1972, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35029978

RESUMEN

Understanding the electronic structure and chemical bonding of transition metal complexes is important for improving the function of molecular photosensitizers and catalysts. We have utilized X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) at the Fe L3 edge to investigate the electronic structure of two Fe N-heterocyclic carbene complexes with similar chemical structures but different steric effects and contrasting excited-state dynamics: [Fe(bmip)2]2+ and [Fe(btbip)2]2+, bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)pyridine and btbip = 2,6-bis(3-tert-butyl-imidazole-1-ylidene)pyridine. In combination with charge transfer multiplet and ab initio calculations, we quantified how changes in Fe-carbene bond length due to steric effects modify the metal-ligand bonding, including σ/π donation and π back-donation. We find that σ donation is significantly stronger in [Fe(bmip)2]2+, whereas the π back-donation is similar in both complexes. The resulting stronger ligand field and nephelauxetic effect in [Fe(bmip)2]2+ lead to approximately 1 eV destabilization of the quintet metal-centered 5T2g excited state compared to [Fe(btbip)2]2+, providing an explanation for the absence of a photoinduced 5T2g population and a longer metal-to-ligand charge-transfer excited-state lifetime in [Fe(bmip)2]2+. This work demonstrates how combined modeling of XAS and RIXS spectra can be utilized to understand the electronic structure of transition metal complexes governed by correlated electrons and donation/back-donation interactions.

9.
J Phys Chem Lett ; 13(1): 378-386, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-34985900

RESUMEN

Quantifying charge delocalization associated with short-lived photoexcited states of molecular complexes in solution remains experimentally challenging, requiring local element specific femtosecond experimental probes of time-evolving electron transfer. In this study, we quantify the evolving valence hole charge distribution in the photoexcited charge transfer state of a prototypical mixed valence bimetallic iron-ruthenium complex, [(CN)5FeIICNRuIII(NH3)5]-, in water by combining femtosecond X-ray spectroscopy measurements with time-dependent density functional theory calculations of the excited-state dynamics. We estimate the valence hole charge that accumulated at the Fe atom to be 0.6 ± 0.2, resulting from excited-state metal-to-metal charge transfer, on an ∼60 fs time scale. Our combined experimental and computational approach provides a spectroscopic ruler for quantifying excited-state valency in solvated complexes.

11.
J Am Chem Soc ; 143(49): 20645-20656, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34851636

RESUMEN

The ability to access panchromatic absorption and long-lived charge-transfer (CT) excited states is critical to the pursuit of abundant-metal molecular photosensitizers. Fe(II) complexes supported by benzannulated diarylamido ligands have been reported to broadly absorb visible light with nanosecond CT excited state lifetimes, but as amido donors exert a weak ligand field, this defies conventional photosensitizer design principles. Here, we report an aerobically stable Fe(II) complex of a phenanthridine/quinoline diarylamido ligand, Fe(ClL)2, with panchromatic absorption and a 3 ns excited-state lifetime. Using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) at the Fe L-edge and N K-edge, we experimentally validate the strong Fe-Namido orbital mixing in Fe(ClL)2 responsible for the panchromatic absorption and demonstrate a previously unreported competition between ligand-field strength and metal-ligand (Fe-Namido) covalency that stabilizes the 3CT state over the lowest energy triplet metal-centered (3MC) state in the ground-state geometry. Single-crystal X-ray diffraction (XRD) and density functional theory (DFT) suggest that formation of this CT state depopulates an orbital with Fe-Namido antibonding character, causing metal-ligand bonds to contract and accentuating the geometric differences between CT and MC excited states. These effects diminish the driving force for electron transfer to metal-centered excited states and increase the intramolecular reorganization energy, critical properties for extending the lifetime of CT excited states. These findings highlight metal-ligand covalency as a novel design principle for elongating excited state lifetimes in abundant metal photosensitizers.

12.
Nature ; 596(7873): 531-535, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34433948

RESUMEN

Water is one of the most important, yet least understood, liquids in nature. Many anomalous properties of liquid water originate from its well-connected hydrogen bond network1, including unusually efficient vibrational energy redistribution and relaxation2. An accurate description of the ultrafast vibrational motion of water molecules is essential for understanding the nature of hydrogen bonds and many solution-phase chemical reactions. Most existing knowledge of vibrational relaxation in water is built upon ultrafast spectroscopy experiments2-7. However, these experiments cannot directly resolve the motion of the atomic positions and require difficult translation of spectral dynamics into hydrogen bond dynamics. Here, we measure the ultrafast structural response to the excitation of the OH stretching vibration in liquid water with femtosecond temporal and atomic spatial resolution using liquid ultrafast electron scattering. We observed a transient hydrogen bond contraction of roughly 0.04 Å on a timescale of 80 femtoseconds, followed by a thermalization on a timescale of approximately 1 picosecond. Molecular dynamics simulations reveal the need to treat the distribution of the shared proton in the hydrogen bond quantum mechanically to capture the structural dynamics on femtosecond timescales. Our experiment and simulations unveil the intermolecular character of the water vibration preceding the relaxation of the OH stretch.

13.
J Phys Chem Lett ; 12(28): 6676-6683, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34260255

RESUMEN

We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)3]2+ how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation. The spin of the localized electron is deduced from the selection rules of the RIXS process establishing new experimental capabilities for probing transient charge and spin densities.

14.
Nat Chem ; 13(4): 343-349, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33589787

RESUMEN

It is well known that the solvent plays a critical role in ultrafast electron-transfer reactions. However, solvent reorganization occurs on multiple length scales, and selectively measuring short-range solute-solvent interactions at the atomic level with femtosecond time resolution remains a challenge. Here we report femtosecond X-ray scattering and emission measurements following photoinduced charge-transfer excitation in a mixed-valence bimetallic (FeiiRuiii) complex in water, and their interpretation using non-equilibrium molecular dynamics simulations. Combined experimental and computational analysis reveals that the charge-transfer excited state has a lifetime of 62 fs and that coherent translational motions of the first solvation shell are coupled to the back electron transfer. Our molecular dynamics simulations identify that the observed coherent translational motions arise from hydrogen bonding changes between the solute and nearby water molecules upon photoexcitation, and have an amplitude of tenths of ångströms, 120-200 cm-1 frequency and ~100 fs relaxation time. This study provides an atomistic view of coherent solvent reorganization mediating ultrafast intramolecular electron transfer.

15.
J Phys Chem Lett ; 12(4): 1182-1188, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480697

RESUMEN

Zinc porphyrin solar cell dyes with donor-π-acceptor architectures combine light absorber (π), electron-donor, and electron-acceptor moieties inside a single molecule with atomic precision. The donor-π-acceptor design promotes the separation of charge carriers following optical excitation. Here, we probe the excited-state electronic structure within such molecules by combining time-resolved X-ray absorption spectroscopy at the N K-edge with first-principles time-dependent density functional theory (TD-DFT) calculations. Customized Zn porphyrins with strong-donor triphenylamine groups or weak-donor tri-tert-butylbenzene groups were synthesized. Energetically well-separated N K-edge absorption features simultaneously probe the excited-state electronic structure from the perspectives of the macrocycle and triphenylamine N atoms. New absorption transitions between the macrocycle N atoms and the excited-state HOMO vacancy are observed, and the triphenylamine associated absorption feature blue-shifts, consistent with partial oxidation of the donor groups in the excited state.

16.
Phys Chem Chem Phys ; 23(2): 1308-1316, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33367391

RESUMEN

Electron scattering on liquid samples has been enabled recently by the development of ultrathin liquid sheet technologies. The data treatment of liquid-phase electron scattering has been mostly reliant on methodologies developed for gas electron diffraction, in which theoretical inputs and empirical fittings are often needed to account for the atomic form factor and remove the inelastic scattering background. In this work, we present an alternative data treatment method that is able to retrieve the radial distribution of all the charged particle pairs without the need of either theoretical inputs or empirical fittings. The merits of this new method are illustrated through the retrieval of real-space molecular structure from experimental electron scattering patterns of liquid water, carbon tetrachloride, chloroform, and dichloromethane.

17.
J Chem Phys ; 153(12): 124903, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33003752

RESUMEN

We report a study of chromophore-catalyst assemblies composed of light harvesting hexabenzocoronene (HBC) chromophores axially coordinated to two cobaloxime complexes. The chromophore-catalyst assemblies were prepared using bottom-up synthetic methodology and characterized using solid-state NMR, IR, and x-ray absorption spectroscopy. Detailed steady-state and time-resolved laser spectroscopy was utilized to identify the photophysical properties of the assemblies, coupled with time-dependent DFT calculations to characterize the relevant excited states. The HBC chromophores tend to assemble into aggregates that exhibit high exciton diffusion length (D = 18.5 molecule2/ps), indicating that over 50 chromophores can be sampled within their excited state lifetime. We find that the axial coordination of cobaloximes leads to a significant reduction in the excited state lifetime of the HBC moiety, and this finding was discussed in terms of possible electron and energy transfer pathways. By comparing the experimental quenching rate constant (1.0 × 109 s-1) with the rate constant estimates for Marcus electron transfer (5.7 × 108 s-1) and Förster/Dexter energy transfers (8.1 × 106 s-1 and 1.0 × 1010 s-1), we conclude that both Dexter energy and Marcus electron transfer process are possible deactivation pathways in CoQD-A. No charge transfer or energy transfer intermediate was detected in transient absorption spectroscopy, indicating fast, subpicosecond return to the ground state. These results provide important insights into the factors that control the photophysical properties of photocatalytic chromophore-catalyst assemblies.

18.
J Chem Phys ; 152(7): 074203, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32087640

RESUMEN

Valence-to-core x-ray emission spectroscopy (VtC XES) combines the sample flexibility and element specificity of hard x-rays with the chemical environment sensitivity of valence spectroscopy. We extend this technique to study geometric and electronic structural changes induced by photoexcitation in the femtosecond time domain via laser-pump, x-ray probe experiments using an x-ray free electron laser. The results of time-resolved VtC XES on a series of ferrous complexes [Fe(CN)2n(2, 2'-bipyridine)3-n]-2n+2, n = 1, 2, 3, are presented. Comparisons of spectra obtained from ground state density functional theory calculations reveal signatures of excited state bond length and oxidation state changes. An oxidation state change associated with a metal-to-ligand charge transfer state with a lifetime of less than 100 fs is observed, as well as bond length changes associated with metal-centered excited states with lifetimes of 13 ps and 250 ps.

19.
Chem Sci ; 11(17): 4360-4373, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-34122894

RESUMEN

Photoinduced intramolecular electron transfer dynamics following metal-to-ligand charge-transfer (MLCT) excitation of [Fe(CN)4(2,2'-bipyridine)]2- (1), [Fe(CN)4(2,3-bis(2-pyridyl)pyrazine)]2- (2) and [Fe(CN)4(2,2'-bipyrimidine)]2- (3) were investigated in various solvents with static and time-resolved UV-Visible absorption spectroscopy and Fe 2p3d resonant inelastic X-ray scattering (RIXS). This series of polypyridyl ligands, combined with the strong solvatochromism of the complexes, enables the 1MLCT vertical energy to be varied from 1.64 eV to 2.64 eV and the 3MLCT lifetime to range from 180 fs to 67 ps. The 3MLCT lifetimes in 1 and 2 decrease exponentially as the MLCT energy increases, consistent with electron transfer to the lowest energy triplet metal-centred (3MC) excited state, as established by the Tanabe-Sugano analysis of the Fe 2p3d RIXS data. In contrast, the 3MLCT lifetime in 3 changes non-monotonically with MLCT energy, exhibiting a maximum. This qualitatively distinct behaviour results from a competing 3MLCT → ground state (GS) electron transfer pathway that exhibits energy gap law behaviour. The 3MLCT → GS pathway involves nuclear tunnelling for the high-frequency polypyridyl breathing mode (hν = 1530 cm-1), which is most displaced for complex 3, making this pathway significantly more efficient. Our study demonstrates that the excited state relaxation mechanism of Fe polypyridyl photosensitizers can be readily tuned by ligand and solvent environment. Furthermore, our study reveals that extending charge transfer lifetimes requires control of the relative energies of the 3MLCT and the 3MC states and suppression of the intramolecular distortion of the acceptor ligand in the 3MLCT excited state.

20.
Angew Chem Int Ed Engl ; 59(1): 364-372, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31602726

RESUMEN

Iron N-heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub-ps X-ray spectroscopy study of an FeII NHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3 MLCT state, from the initially excited 1 MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3 MC state, in competition with vibrational relaxation and cooling to the relaxed 3 MLCT state. The relaxed 3 MLCT state then decays much more slowly (7.6 ps) to the 3 MC state. The 3 MC state is rapidly (2.2 ps) deactivated to the ground state. The 5 MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3 MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition-metal complexes for similar ultrafast decays to optimize photochemical performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA