Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Exp Hematol ; : 104247, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848877

RESUMEN

Hematopoietic stem cells (HSCs) adapt to organismal blood production needs by balancing self-renewal and differentiation, adjusting to physiological demands and external stimuli. Although sex differences have been implicated in differential hematopoietic function in males versus females, the mediators responsible for these effects require further study. Here, we characterized hematopoiesis at a steady state and during regeneration following hematopoietic stem cell transplantation (HST). RNA sequencing of lineage(-) bone marrow cells from C57/Bl6 mice revealed a broad transcriptional similarity between the sexes. However, we identified distinct sex differences in key biological pathways, with female cells showing reduced expression of signatures involved in inflammation and enrichment of genes related to glycolysis, hypoxia, and cell cycle regulation, suggesting a more quiescent and less inflammatory profile compared with male cells. To determine the functional impacts of the observed transcriptomic differences, we performed sex-matched and mismatched transplantation studies of lineage(-) donor cells. During short-term 56-day HST recovery, we found a male donor cell proliferative advantage, coinciding with elevated serum TNF-α, and a male recipient engraftment advantage, coinciding with increased serum CXCL12. Together, we show that sex-specific cell responses, marked by differing expression of pathways regulating metabolism, hypoxia, and inflammation, shape normal and regenerative hematopoiesis, with implications for the clinical understanding of hematopoietic function.

2.
Nat Chem Biol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528120

RESUMEN

Exportin-1 (XPO1/CRM1) plays a central role in the nuclear-to-cytoplasmic transport of hundreds of proteins and contributes to other cellular processes, such as centrosome duplication. Small molecules targeting XPO1 induce cytotoxicity, and selinexor was approved by the Food and Drug Administration in 2019 as a cancer chemotherapy for relapsed multiple myeloma. Here, we describe a cell-type-dependent chromatin-binding function for XPO1 that is essential for the chromatin occupancy of NFAT transcription factors and thus the appropriate activation of T cells. Additionally, we establish a class of XPO1-targeting small molecules capable of disrupting the chromatin binding of XPO1 without perturbing nuclear export or inducing cytotoxicity. This work defines a broad transcription regulatory role for XPO1 that is essential for T cell activation as well as a new class of XPO1 modulators to enable therapeutic targeting of XPO1 beyond oncology including in T cell-driven autoimmune disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA