Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 354: 141574, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460845

RESUMEN

Heavy metal pollution is an important environmental issue causing several hazards to organisms. In the present study, we investigated the uptake and accumulation of heavy metals (Pb, Cd, Cu, and Zn) in chicken lungs after six months of breeding on polymetallic-contaminated area in Jebel Ressas village. Genotoxicity in term of micronuclei frequency as well as oxidative stress in term of enzymatic activities of Catalase (CAT), Glutathion-S-Transferase (GST) and malondialdehydes accumulation (MDA) were performed. In addition, gene expression levels involved in oxidative stress genes (cat, sod and gst), metal homeostasis (mt1 and mt4) and DNA metabolism (p53, bcl2, caspase 3 and DNA ligase) were detected. Exposed chicken lungs revealed an important heavy metal accumulation of Cd and Zn co-occurring with oxidative status modulation. Transcriptomic results unveiled an upregulation of oxidative stress and homeostasis genes. On the other hand, genes involved in DNA metabolism indicated cellular functioning towards cells death and apoptosis modulation. Moreover, the histopathological examination revealed lung lesions in the chickens exposed to heavy metal contamination. Our study highlights the hazardous effects of heavy metal pollution on chicken respiratory system.


Asunto(s)
Cadmio , Metales Pesados , Animales , Cadmio/toxicidad , Pollos/metabolismo , Metales Pesados/análisis , Estrés Oxidativo , Pulmón/metabolismo , ADN/metabolismo
2.
J Environ Manage ; 325(Pt B): 116560, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279772

RESUMEN

Aerated compost tea (ACT) contains soluble humic substances (SHS) that are expected to alter the dynamics and ecotoxicity of Cu in soil. This study investigated the efficiency of ACT in enhancing the mobility and phytoextraction of Cu in vineyard soil. Crimson clover (Trifolium incarnatum L.) was grown on a vineyard soil at three concentrations of Cu (90, 261 and 432 mg kg-1), and supplied (or not) with ACT, then sampled after 56 days to determine the amount of Cu phytoextracted. Soil was extracted with 0.01 M KCl and potentiometric analyses were performed to measure the impact of ACT on the speciation of Cu in the extraction solution. ACT was found to increase the mobility of Cu in the soil by a factor of 3-14 depending on the soil Cu content and on the soil extraction date. The increase in Cu mobility was associated with an increase in absorbance at 254 nm and with a decrease in the free ionic fraction of Cu in the KCl extract, suggesting that Cu was mainly mobilized by the SHS present in the compost tea, and through a ligand-controlled dissolution process. ACT increased Cu phytoextraction at Cu90 and Cu261 by on average 80% thanks to its positive impact on plant growth, and on Cu accumulation in plant shoots, whereas it reduced Cu phytoextraction at Cu432 due to its deleterious effect on plant growth at this soil Cu content. ACT is thus an efficient way to increase the phytoavailability of Cu in soil, but probably should not be used in vineyard soils that are highly contaminated by Cu. To obtain Cu phytoextraction yields in line with the needs of the wine sector, the use of ACT needs to be associated with the cultivation of a Cu-accumulating plant.


Asunto(s)
Compostaje , Contaminantes del Suelo , Suelo , Cobre/análisis , Contaminantes del Suelo/análisis , Granjas , Biodegradación Ambiental ,
3.
J Agric Food Chem ; 70(26): 8085-8096, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35730681

RESUMEN

Durum wheat is one of the cereal crops that accumulates the highest concentrations of cadmium (Cd) and deoxynivalenol (DON) mycotoxin in its grains, thereby affecting the safety of products made of durum wheat grains (pasta and semolina). This study investigates in planta the interaction between Cd and Fusarium graminearum, the main causal agent of DON accumulation in grains. A pot experiment was designed to characterize the response of durum wheat to F. graminearum infection at three levels of Cd exposure: 0.1, 2, and 10 mg Cd kg-1 soil, which showed that the accumulation of Cd and DON resulted from interacting processes. On the one hand, plant exposure to Cd reduced the concentration of DON in grains. The mitigating effect of Cd on DON accumulation was attributed to the restricted growth of F. graminearum, which could result from enhanced plant resistance to the fungal pathogen induced by Cd exposure. On the other hand, F. graminearum infection of durum wheat increased the Cd concentration in the grains. The promoting effect of Fusarium infection on Cd accumulation was attributed to decoupling of the allocation of Cd and photoassimilates to the grains and to the reduced strength of the grain sink for photoassimilates caused by the fungus. Provided that this result is confirmed in field conditions, it suggests that in Cd-contaminated soils, particular attention should be paid to agronomic practices that affect Fusarium head blight disease to avoid further increase in the risk of exceeding the regulatory limit set by the European Union for Cd in durum wheat.


Asunto(s)
Fusarium , Micotoxinas , Cadmio , Grano Comestible/química , Micotoxinas/análisis , Enfermedades de las Plantas/microbiología , Tricotecenos , Triticum/microbiología
4.
Environ Sci Pollut Res Int ; 29(4): 5661-5673, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34424471

RESUMEN

The purpose of this study was to assess heavy metal contamination in soil, plants, earthworms, and chicken in farmlands adjacent to an old mining site and to evaluate the potential exposure risks to humans through the consumption of chicken. For this purpose, soil, earthworms, plant, chickens, and eggs were sampled from 5 sites following a gradient of contamination. All samples were analyzed for heavy metals (Pb, Cd, Cu, and Zn). A food chain model was used in order to characterize heavy metal transfer between soil-plant-earthworm and chicken organs. Furthermore, target hazard quotient (THQ), estimated daily intake (EDI), and hazard index (HI) were employed to assess human health risks posed by heavy metal contamination. Despite the higher level of Pb, our data related to the calculation of EDI and THQ suggested that local consumers are more at risk of Cd contamination. The calculated HI showed values ranging from 2.58 to 4.74 for adults, and up to 12.34 for children, indicating a considerable risk to the health of local inhabitants, especially children. This study highlighted the crucial role of diets based on chickens grown in contaminated areas, on health risks especially for children.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Animales , Pollos , China , Monitoreo del Ambiente , Contaminación de Alimentos/análisis , Humanos , Metales Pesados/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis
5.
Sci Total Environ ; 778: 146428, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030371

RESUMEN

Speciation of Cd in soil solutions strongly determines the fate of this toxic metal in the environment. Generally, in soil solutions, Cd predominantly binds to the dissolved organic matter (DOM). The determination of the quantity and reactivity of DOM that actually complexes Cd in soil solutions is challenging for operational purposes. Therefore, this study tested whether Cd2+ concentration in soil solutions could effectively be predicted by considering complexation with a single mean organic ligand assumed to be a fraction of DOM of unspecified nature or assumed to be purely fulvic acids (FA) with reactivity as described in WHAM VII. The reactivity of the unspecified ligand and the concentration of FA were modelled and fitted to experimental data from 76 agricultural soils with low Cd contents. The optimal reactivity and FA concentration that minimized the relative error (RE) of predictions of the concentration of Cd2+ in soil solutions were either considered constant across soils or modelled from soil properties by multiple linear regressions (MLR) or random forests (RF), giving 6 models, the predictive value of which was assessed by 10-folds cross-validation. When the reactivity of the mean ligand and the optimal FA concentration were considered constant across soils, the models were biased and 66.9% of predictions had relative errors below a factor of 2. By contrast, if the reactivity of the mean ligand or the optimal FA concentration were allowed to vary with soil characteristics, these performances increased to 95.5%, soil pH being the main predictor and RF being slightly more efficient than MLR. With more than 95% of the relative errors of prediction below a factor of 2, the models developed in this work could be valuable for assessing Cd speciation in the solution of soils having a low Cd content.

6.
Environ Pollut ; 265(Pt A): 114831, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32474340

RESUMEN

Mining activity may cause heavy metal accumulation, which threatens human and animal health by their long-term persistence in the environment. This study aims to assess the impact of polymetallic pollution on chicken (Gallus domesticus) from old lead mining sites in northeast of Tunisia: Jebel Ressas (JR). Samples of soil and chickens were collected from five sites being ranked along a gradient of heavy metal contamination. Heavy metal loads were evaluated in soil samples and in chicken liver and kidney. Biochemical evaluation of oxidative stress parameters termed as Catalase (CAT), Glutathione-S-Transferase (GST), and Malondialdehydes (MDA) accumulation was monitored. Metallothionein protein level was assessed as a specific response to heavy metals. DNA alteration was achieved using MNi frequency in the investigated tissues. Finally, the evaluation of gene expression levels of CAT, GST, mt1, mt4, P53, bcl2, caspase3 and DNA-ligase was performed. Our data showed the highest loads of Cd, Cu, Zn and Pb in tissues of animals from site 3, being more pronounced in kidney. Biochemical data suggested a significant increase in antioxidant enzymes activities in all sites respect to control except in site 3 were CAT and GST were inhibited. DNA alteration was observed in all tissues being very pronounced in animals from site 3. Overall, transcriptomic data showed that genes involved in apoptosis were up-regulated in animals exposed to the most contaminated soils. Our data suggest that chicken and selected biomarkers offer a suitable model for biomonitoring assessment of heavy metals transfer through the food web in mining sites. Finally, the obtained results of heavy metals accumulation and related alterations should be carefully considered in view of the controversial relationship between distribution and toxicology of contaminants in exposed organisms.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Oligoelementos , Animales , Pollos , Monitoreo del Ambiente , Humanos , Túnez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA