Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Transplant Direct ; 9(1): e1417, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36591328

RESUMEN

Islet transplantation is a promising treatment for type 1 diabetes. It has the potential to improve glycemic control, particularly in patients suffering from hypoglycemic unawareness and glycemic instability. As most islet grafts do not function permanently, efforts are needed to create an accessible and replaceable site, for islet grafts or for insulin-producing cells obtained from replenishable sources. To this end, we designed and tested an artificial, polymeric subcutaneous transplantation site that allows repeated transplantation of islets. Methods: In this study, we developed and compared scaffolds made of poly(D,L,-lactide-co-ε-caprolactone) (PDLLCL) and polycaprolactone (PCL). Efficacy was first tested in mice' and then, as a proof of principle for application in a large animal model, the scaffolds were tested in pigs, as their skin structure is similar to that of humans. Results: In mice, islet transplantation in a PCL scaffold expedited return to normoglycemia in comparison to PDLLCL (7.7 ± 3.7 versus 16.8 ± 6.5 d), but it took longer than the kidney capsule control group. PCL also supported porcine functional islet survival in vitro. Subcutaneous implantation of PDLLCL and PCL scaffolds in pigs revealed that PCL scaffolds were more stable and was associated with less infiltration by immune cells than PDLLCL scaffolds. Prevascularized PCL scaffolds were therefore used to demonstrate the functional survival of allogenic islets under the skin of pigs. Conclusions: To conclude, a novel PCL scaffold shows efficacy as a readily accessible and replaceable, subcutaneous transplantation site for islets in mice and demonstrated islet survival after a month in pigs.

2.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34445075

RESUMEN

Pre-weaned porcine islets (PPIs) represent an unlimited source for islet transplantation but are functionally immature. We previously showed that necrostatin-1 (Nec-1) immediately after islet isolation enhanced the in vitro development of PPIs. Here, we examined the impact of Nec-1 on the in vivo function of PPIs after transplantation in diabetic mice. PPIs were isolated from pancreata of 8-15-day-old, pre-weaned pigs and cultured in media alone, or supplemented with Nec-1 (100 µM) on day 0 or on day 3 of culture (n = 5 for each group). On day 7, islet recovery, viability, oxygen consumption rate, insulin content, cellular composition, insulin secretion capacity, and transplant outcomes were evaluated. While islet viability and oxygen consumption rate remained high throughout 7-day tissue culture, Nec-1 supplementation on day 3 significantly improved islet recovery, insulin content, endocrine composition, GLUT2 expression, differentiation potential, proliferation capacity of endocrine cells, and insulin secretion. Adding Nec-1 on day 3 of tissue culture enhanced the islet recovery, proportion of delta cells, beta-cell differentiation and proliferation, and stimulation index. In vivo, this leads to shorter times to normoglycemia, better glycemic control, and higher circulating insulin. Our findings identify the novel time-dependent effects of Nec-1 supplementation on porcine islet quantity and quality prior to transplantation.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Imidazoles/farmacología , Indoles/farmacología , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/efectos de los fármacos , Técnicas de Cultivo de Tejidos/métodos , Animales , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/fisiología , Ratones Desnudos , Porcinos , Trasplante Heterólogo/métodos , Trasplantes/efectos de los fármacos , Trasplantes/fisiología
3.
Xenotransplantation ; 28(3): e12667, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33438288

RESUMEN

BACKGROUND: Necrostatin-1 (Nec-1) supplementation to tissue culture media on day 3 has recently been shown to augment the insulin content, endocrine cellular composition, and insulin release of pre-weaned porcine islets (PPIs); however, its effects were only examined for the first 7 days of tissue culture. The present study examined whether the addition of Nec-1 on day 3 could further enhance the in vitro development and function of PPIs after 14 days of tissue culture. METHODS: PPIs were isolated from 8- to 15-day-old, pre-weaned Yorkshire piglets and cultured in an islet maturation media supplemented with Nec-1 on day 3. The recovery, viability, insulin content, endocrine cellular composition, GLUT2 expression in beta cells, differentiation and proliferation potential, and glucose-stimulated insulin secretion of PPIs were assessed on days 3, 7, and 14 of tissue culture (n = 5 on each day). RESULTS: Compared with day 7 of tissue culture, islets on day 14 had a lower recovery, GLUT2 expression in beta cells, proliferation capacity of endocrine cells, and glucose-induced insulin stimulation index. Prolonging the culture time to 14 days did not affect islet viability, insulin content, proportion of endocrine cells, and differentiation potential. CONCLUSION: The growth-inducing effects of Nec-1 on PPIs were most effective on day 7 of tissue culture when added on day 3. Our findings support existing evidence that the in vitro activities of Nec-1 are short-lived and encourage future studies to explore the use of other novel growth factors during prolonged islet tissue culture.


Asunto(s)
Islotes Pancreáticos , Animales , Imidazoles , Indoles , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Porcinos , Trasplante Heterólogo
4.
PLoS One ; 15(12): e0243506, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33284818

RESUMEN

Previous studies have shown that necrostatin-1 (Nec-1) supplementation improved the viability of murine islets following exposure to nitric oxide, increased the survival of human islets during hypoxic culture, and augmented the maturation of pre-weaned porcine islets (PPIs) after 7 days of tissue culture. A limitation of these studies is that only one concentration of Nec-1 was used, and no studies have determined the optimal dose of Nec-1 for PPIs. Thus, the present study examined the effects of Nec-1 on PPIs at four different doses-0, 25, 50, 100, and 200 µM-after 7 days of tissue culture when supplemented on day 3. PPIs were isolated from pancreata of pre-weaned Yorkshire piglets (8-15 days old) and cultured in a specific islet maturation media added with Nec-1 on day 3 of tissue culture at 4 different doses-0, 25, 50, 100, and 200 µM (n = 6 for each dose). After 7 days of tissue culture, islets were assessed for recovery, viability, endocrine cellular content, GLUT2 expression in beta cells, and insulin secretion after glucose challenge. Nec-1 did not affect the viability of both intact islets and dissociated islets cells during tissue culture regardless of doses. Islets cultured in media supplemented with Nec-1 at 100 µM, but not 25, 50, or 200 µM, had a significantly higher recovery, composition of endocrine cells, GLUT2 expression in beta cells, and insulin secretion capacity than control islets cultured in media without Nec-1 supplementation. Moreover, culturing islets in 200 µM Nec-1 supplemented media not only failed to improve the insulin release but resulted in a lower glucose-induced insulin stimulation index compared to islets cultured in media added with 100 µM Nec-1. Xenotransplantation using porcine islets continues to demonstrate scientific advances to justify this area of research. Our findings indicate that Nec-1 supplementation at 100 µM was most effective to enhance the in vitro maturation of PPIs during tissue culture.


Asunto(s)
Medios de Cultivo/química , Imidazoles/farmacología , Indoles/farmacología , Islotes Pancreáticos/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Relación Dosis-Respuesta a Droga , Glucosa/metabolismo , Imidazoles/metabolismo , Indoles/metabolismo , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Trasplante de Islotes Pancreáticos/métodos , Páncreas/metabolismo , Porcinos , Técnicas de Cultivo de Tejidos/métodos
5.
Cell Transplant ; 29: 963689720977835, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33267618

RESUMEN

For the advancement of porcine xenotransplantation for clinical use in type 1 diabetes mellitus, the concerns of a sustainable and safe digestion enzyme blend must be overcome. Incorporating good manufacturing practices (GMP) can facilitate this through utilizing GMP-grade enzymes. In conjunction, still taking into account the cost-effectiveness, a wide concern. We evaluated how GMP-grade enzyme blends impact our piglet islets and their long-term effects. Preweaned porcine islets (PPIs) were isolated from 8- to 10-day-old pigs. Digestion enzyme blends, collagenase type V (Type V), collagenase AF-1 GMP-grade with collagenase NB 6 GMP-grade (AF-1 and NB 6), and collagenase AF-1 GMP-grade with collagenase neutral protease AF GMP-grade (AF-1 and NP AF) were compared. Islet quality control assessments, islet yield, viability, and function, were performed on days 3 and 7, and cell content was performed on day 7. GMP-grade AF-1 and NB 6 (17,209 ± 2,730 islet equivalent per gram of pancreatic tissue [IE/g] on day 3, 9,001 ± 1,034 IE/g on day 7) and AF-1 and NP AF (17,214 ± 3,901 IE/g on day 3, 8,833 ± 2,398 IE/g on day 7) showed a significant increase in islet yield compared to Type V (4,618 ± 1,240 IE/g on day 3, 1,923 ± 704 IE/g on day 7). Islet size, viability, and function showed comparable results in all enzyme blends. There was no significant difference in islet cellular content between enzyme blends. This study demonstrated a comparison of GMP-grade collagenase enzyme blends and a standard crude collagenase enzyme in preweaned-aged porcine, a novel topic in this age. GMP-grade enzyme blends of AF-1 and NB 6 and AF-1 and NP AF resulted in substantially higher yields and as effective PPIs compared to Type V. In the long run, considering costs, integrity, and sustainability, GMP-grade enzyme blends are more favorable for clinical application due to high reproducibility in comparison to undefined manufacturing processes of standard enzymes.


Asunto(s)
Colagenasas/farmacología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Animales , Islotes Pancreáticos/fisiología , Trasplante de Islotes Pancreáticos , Páncreas , Porcinos , Supervivencia Tisular/fisiología
6.
Cell Transplant ; 29: 963689720974582, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33231091

RESUMEN

Access to functional high-quality pancreatic human islets is critical to advance diabetes research. The Integrated Islet Distribution Program (IIDP), a major source for human islet distribution for over 15 years, conducted a study to evaluate the most advantageous times to ship islets postisolation to maximize islet recovery. For the evaluation, three experienced IIDP Islet Isolation Centers each provided samples from five human islet isolations, shipping 10,000 islet equivalents (IEQ) at four different time periods postislet isolation (no 37°C culture and shipped within 0 to 18 hours; or held in 37°C culture for 18 to 42, 48 to 96, or 144 to 192 hours). A central evaluation center compared samples for islet quantity, quality, and viability for each experimental condition preshipment and postshipment, as well as post 37°C culture 18 to 24 hours after shipment receipt. Additional evaluations included measures of functional potency by static glucose-stimulated insulin release (GSIR), represented as a stimulation index. Comparing the results of the four preshipment holding periods, the greatest IEQ loss postshipment occurred with the shortest preshipment times. Similar patterns emerged when comparing preshipment to postculture losses. In vitro islet function (GSIR) was not adversely impacted by increased tissue culture time. These data indicate that allowing time for islet recovery postisolation, prior to shipping, yields less islet loss during shipment without decreasing islet function.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/metabolismo , Preservación de Órganos/métodos , Humanos , Islotes Pancreáticos/citología , Factores de Tiempo
7.
Islets ; 12(3): 41-58, 2020 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-32459554

RESUMEN

BACKGROUND: The use of pancreata from pre-weaned piglets has the potential to serve as an unlimited alternative source of islets for clinical xenotransplantation. As pre-weaned porcine islets (PPIs) are immature and require prolonged culture, we developed an islet maturation media (IMM) and evaluated its effect on improving the quantity and quality of PPIs over 14 days of culture. METHODS: PPIs were isolated from the pancreata of pre-weaned Yorkshire piglets (8-15 days old). Each independent islet isolation was divided for culture in either control Ham's F-10 media (n = 5) or IMM (n = 5) for 14 days. On day 3, 7 and 14 of culture, islets were assessed for islet yield, isolation index, viability, insulin content, endocrine cellular composition, differentiation of beta cells, and insulin secretion during glucose stimulation. RESULTS: In comparison to control islets, culturing PPIs in IMM significantly increased islet yield. PPIs cultured in IMM also maintained a stable isolation index and viability throughout 14 days of culture. The insulin content, endocrine cellular composition, and differentiation of beta cells were significantly improved in PPIs cultured in IMM, which subsequently augmented their insulin secretory capacity in response to glucose challenge compared to control islets. CONCLUSIONS: Culturing PPIs in IMM increases islet yield, isolation index, viability, insulin content, endocrine cellular composition, differentiation of endocrine progenitor cells toward beta cells, and insulin secretion. Due to the improved islet quantity and quality after in vitro culture, the use of IMM in the culture of PPIs will assist to advance the outcomes of clinical islet xenotransplantation.


Asunto(s)
Medios de Cultivo , Islotes Pancreáticos/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Citometría de Flujo , Insulina/análisis , Insulina/metabolismo , Islotes Pancreáticos/química , Porcinos
8.
Xenotransplantation ; 27(1): e12555, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31532037

RESUMEN

BACKGROUND: Necroptosis has been demonstrated to be a primary mechanism of islet cell death. This study evaluated whether the supplementation of necrostatin-1 (Nec-1), a potent inhibitor of necroptosis, to islet culture media could improve the recovery, maturation, and function of pre-weaned porcine islets (PPIs). METHODS: PPIs were isolated from pre-weaned Yorkshire piglets (8-15 days old) and either cultured in control islet culture media (n = 6) or supplemented with Nec-1 (100 µM, n = 5). On days 3 and 7 of culture, islets were assessed for recovery, insulin content, viability, cellular composition, GLUT2 expression in beta cells, differentiation of pancreatic endocrine progenitor cells, function, and oxygen consumption rate. RESULTS: Nec-1 supplementation induced a 2-fold increase in the insulin content of PPIs on day 7 of culture. When compared to untreated islets, Nec-1 treatment doubled the beta- and alpha-cell composition and accelerated the development of delta cells. Additionally, beta cells of Nec-1-treated islets had a significant upregulation in GLUT2 expression. The enhanced development of major endocrine cells and GLUT2 expression after Nec-1 treatment subsequently led to a significant increase in the amount of insulin secreted in response to in vitro glucose challenge. Islet recovery, viability, and oxygen consumption rate were unaffected by Nec-1. CONCLUSION: This study underlines the importance of necroptosis in islet cell death after isolation and demonstrates the novel effects of Nec-1 to increase islet insulin content, enhance pancreatic endocrine cell development, facilitate GLUT2 upregulation in beta cells, and augment insulin secretion. Nec-1 supplementation to culture media significantly improves islet quality prior to xenotransplantation.


Asunto(s)
Separación Celular/métodos , Transportador de Glucosa de Tipo 2/metabolismo , Imidazoles/metabolismo , Indoles/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/fisiología , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Suplementos Dietéticos , Transportador de Glucosa de Tipo 2/genética , Humanos , Insulina/metabolismo , Necroptosis , Consumo de Oxígeno , Porcinos , Trasplante Heterólogo , Regulación hacia Arriba
9.
Xenotransplantation ; 27(1): e12554, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31495985

RESUMEN

INTRODUCTION: Islet recovery from within alginate-based microcapsules is necessary for certain analytical assays like flow cytometry; however, this technology has not been widely characterized. In this study, we explore the ability of EDTA, EGTA, and sodium citrate to induce reverse alginate polymerization via chelation and assess the toxicity of each chelator on pancreatic islets. METHODS: EDTA, EGTA, and sodium citrate were used to dissolve single-layered Ba2+ alginate encapsulated islets and the rate of capsule breakdown calculated from analysis of imaging data. The effect of chelator exposure on islet viability and recovery was assessed using flow cytometry, while glucose-stimulated insulin release (GSIR) assay was used to measure effects on islet function. RESULTS: EGTA demonstrated the most rapid microcapsule dissolving rate followed by EDTA and sodium citrate. Islet recovery was significantly better when encapsulated islets were treated with EDTA than EGTA and Na+ citrate. A decrease in viability and increase in apoptotic cells were observed when encapsulated islets were treated with Na+ citrate compared to islets treated with EDTA and EGTA. Islets treated with EDTA and EGTA demonstrated comparable stimulation index values to non-treated control. Conversely, islets treated with Na+ citrate exhibited significantly decreased SI values compared to control. All chelator groups showed significantly lower insulin secretion than non-treated islets. CONCLUSION: Islet recovery from alginate microcapsule is possible using common chelators like Na+ citrate, EDTA, and EGTA. Chelation of encapsulated islets using EDTA demonstrated the most efficient dissolving capabilities with the least toxicity toward islet recovery and health.


Asunto(s)
Cápsulas/metabolismo , Separación Celular/métodos , Quelantes/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/fisiología , Alginatos/química , Animales , Apoptosis , Bario/química , Supervivencia Celular , Células Cultivadas , Citometría de Flujo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Porcinos , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA