Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Acta Biomater ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838907

RESUMEN

Although descended from orb weavers, spiders in the family Theridiidae spin cobwebs whose sticky prey capture gumfoot lines extend from a silk tangle to a surface below. When a crawling insect contacts glue droplets at the bottom of a gumfoot line, the line's weak pyriform anchor releases, causing the taut line to contract, pulling the insect from the surface and making its struggles to escape ineffective. To determine if this change in prey capture biomechanics was accompanied by a change in the material properties of theridiid glue, we characterized the elastic modulus and toughness of the glue droplet proteins of four theridiid species at 20-90 % relative humidity and compared their properties with those of 13 orb weaving species in the families Tetragnathidae and Araneidae. Compared to orb weavers, theridiid glue proteins had low extensions per protein volume and low elastic modulus and toughness values. These differences are likely explained by the loss of tension on a gumfoot line when its anchor fails, which may prioritize glue droplet adhesion rather than extension. Similarities in theridiid glue droplet properties did not reflect these species' evolutionary relationships. Instead, they appear associated with differences in web architecture. Two species that had stiffer gumfoot support lines and longer and more closely spaced gumfoot lines also had stiffer glue proteins. These lines may store more energy, and, when their anchors release, require stiffer glue to resist the more forceful upward thrust of a prey. STATEMENT OF SIGNIFICANCE: When a crawling insect contacts glue droplets on a theridiid cobweb's gumfoot line, this taut line's anchor fails and the insect is hoisted upward, rendering its struggles to escape ineffective. This strategy contrasts with that of orb weaving ancestors, which rely on more closely spaced prey capture threads to intercept and retain flying insects. A comparison of the elastic modulus and toughness of gumfoot and orb web glue proteins shows that this change in prey capture biomechanics is associated with reductions in the stiffness and toughness of cobweb glue. Unlike orb web capture threads, whose droplets extend in a coordinated fashion to sum adhesive forces, gumfoot lines become untethered, which prioritizes glue droplet adhesive contact over glue droplet extension.

2.
BMC Ecol Evol ; 22(1): 89, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810286

RESUMEN

BACKGROUND: Spiders have evolved two types of sticky capture threads: one with wet adhesive spun by ecribellate orb-weavers and another with dry adhesive spun by cribellate spiders. The evolutionary history of cribellate capture threads is especially poorly understood. Here, we use genomic approaches to catalog the spider-specific silk gene family (spidroins) for the cribellate orb-weaver Uloborus diversus. RESULTS: We show that the cribellar spidroin, which forms the puffy fibrils of cribellate threads, has three distinct repeat units, one of which is conserved across cribellate taxa separated by ~ 250 Mya. We also propose candidates for a new silk type, paracribellar spidroins, which connect the puffy fibrils to pseudoflagelliform support lines. Moreover, we describe the complete repeat architecture for the pseudoflagelliform spidroin (Pflag), which contributes to extensibility of pseudoflagelliform axial fibers. CONCLUSIONS: Our finding that Pflag is closely related to Flag, supports homology of the support lines of cribellate and ecribellate capture threads. It further suggests an evolutionary phase following gene duplication, in which both Flag and Pflag were incorporated into the axial lines, with subsequent loss of Flag in uloborids, and increase in expression of Flag in ecribellate orb-weavers, explaining the distinct mechanical properties of the axial lines of these two groups.


Asunto(s)
Fibroínas , Arañas , Animales , Evolución Biológica , Fibroínas/genética , Duplicación de Gen , Seda/genética , Arañas/genética
3.
Integr Comp Biol ; 61(4): 1459-1480, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34003260

RESUMEN

The origin of aggregate silk glands and their production of wet adhesive silks is considered a key innovation of the Araneoidea, a superfamily of spiders that build orb-webs and cobwebs. Orb-web weavers place aggregate glue on an extensible capture spiral, whereas cobweb weavers add it to the ends of strong, stiff fibers, called gumfoot lines. Here we describe the material behavior and quantitative proteomics of the aggregate glues of two cobweb weaving species, the western black widow, Latrodectus hesperus, and the common house spider, Parasteatoda tepidariorum. For each species, respectively, we identified 48 and 33 proteins that were significantly more abundant in the portion of the gumfoot line with glue than in its fibers. These proteins were more highly glycosylated and phosphorylated than proteins found in silk fibers without glue, which likely explains aggregate glue stickiness. Most glue-enriched proteins were of anterior aggregate gland origin, supporting the hypothesis that cobweb weavers' posterior aggregate glue is specialized for another function. We found that cobweb weaver glue droplets are stiffer and tougher than the adhesive of most orb-web weaving species. Attributes of gumfoot glue protein composition that likely contribute to this stiffness include the presence of multiple protein families with conserved cysteine residues, a bimodal distribution of isoelectric points, and families with conserved functions in protein aggregation, all of which should contribute to cohesive protein-protein interactions. House spider aggregate droplets were more responsive to humidity changes than black widow droplets, which could be mediated by differences in protein sequence, post-translational modifications, the non-protein components of the glue droplets, and/or the larger amount of aqueous material that surrounds the adhesive cores of their glue droplets.


Asunto(s)
Arañas , Adhesivos , Secuencia de Aminoácidos , Animales , Seda
4.
G3 (Bethesda) ; 11(1)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561241

RESUMEN

Spider silks are renowned for their high-performance mechanical properties. Contributing to these properties are proteins encoded by the spidroin (spider fibroin) gene family. Spidroins have been discovered mostly through cDNA studies of females based on the presence of conserved terminal regions and a repetitive central region. Recently, genome sequencing of the golden orb-web weaver, Trichonephila clavipes, provided a complete picture of spidroin diversity. Here, we refine the annotation of T. clavipes spidroin genes including the reclassification of some as non-spidroins. We rename these non-spidroins as spidroin-like (SpL) genes because they have repetitive sequences and amino acid compositions like spidroins, but entirely lack the archetypal terminal domains of spidroins. Insight into the function of these spidroin and SpL genes was then examined through tissue- and sex-specific gene expression studies. Using qPCR, we show that some silk genes are upregulated in male silk glands compared to females, despite males producing less silk in general. We also find that an enigmatic spidroin that lacks a spidroin C-terminal domain is highly expressed in silk glands, suggesting that spidroins could assemble into fibers without a canonical terminal region. Further, we show that two SpL genes are expressed in silk glands, with one gene highly evolutionarily conserved across species, providing evidence that particular SpL genes are important to silk production. Together, these findings challenge long-standing paradigms regarding the evolutionary and functional significance of the proteins and conserved motifs essential for producing spider silks.


Asunto(s)
Fibroínas , Seda , Arañas/genética , Animales , Secuencia de Bases , Femenino , Fibroínas/genética , Expresión Génica , Masculino , Secuencias Repetitivas de Ácidos Nucleicos , Factores Sexuales , Seda/genética
5.
Biomacromolecules ; 21(3): 1186-1194, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32003982

RESUMEN

The semicrystalline protein structure and impressive mechanical properties of major ampullate (MA) spider silk make it a promising natural alternative to polyacrylonitrile (PAN) fibers for carbon fiber manufacture. However, when annealed using a similar procedure to carbon fiber production, the tensile strength and Young's modulus of MA silk decrease. Despite this, MA silk fibers annealed at 600 °C remain stronger and tougher than similarly annealed PAN but have a lower Young's modulus. Although MA silk and PAN graphitize to similar extents, annealing disrupts the hydrogen bonding that controls crystal alignment within MA silk. Consequently, unaligned graphite crystals form in annealed MA silk, causing it to weaken, while graphite crystals in PAN maintain alignment along the fiber axis, strengthening the fibers. These shortcomings of spider silk when annealed provide insights into the selection and design of future alternative carbon fiber precursors.


Asunto(s)
Seda , Arañas , Animales , Módulo de Elasticidad , Resistencia a la Tracción
6.
Sci Rep ; 9(1): 13656, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541123

RESUMEN

Spiders are commonly found in terrestrial environments and many rely heavily on their silks for fitness related tasks such as reproduction and dispersal. Although rare, a few species occupy aquatic or semi-aquatic habitats and for them, silk-related specializations are also essential to survive in aquatic environments. Most spider silks studied to date are from cob-web and orb-web weaving species, leaving the silks from many other terrestrial spiders as well as water-associated spiders largely undescribed. Here, we characterize silks from three Dictynoidea species: the aquatic spiders Argyroneta aquatica and Desis marina as well as the terrestrial Badumna longinqua. From silk gland RNA-Seq libraries, we report a total of 47 different homologs of the spidroin (spider fibroin) gene family. Some of these 47 spidroins correspond to known spidroin types (aciniform, ampullate, cribellar, pyriform, and tubuliform), while other spidroins represent novel branches of the spidroin gene family. We also report a hydrophobic amino acid motif (GV) that, to date, is found only in the spidroins of aquatic and semi-aquatic spiders. Comparison of spider silk sequences to the silks from other water-associated arthropods, shows that there is a diversity of strategies to function in aquatic environments.


Asunto(s)
Fibroínas/genética , Perfilación de la Expresión Génica/veterinaria , Seda/genética , Arañas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Organismos Acuáticos/genética , Evolución Molecular , Femenino , Fibroínas/química , Fibroínas/metabolismo , Regulación de la Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Familia de Multigenes , Filogenia , Análisis de Secuencia de ARN , Seda/metabolismo , Arañas/clasificación , Arañas/metabolismo
7.
PLoS One ; 13(9): e0203563, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30235223

RESUMEN

Most spiders spin multiple types of silk, including silks for reproduction, prey capture, and draglines. Spiders are a megadiverse group and the majority of spider silks remain uncharacterized. For example, nothing is known about the silk molecules of Tengella perfuga, a spider that spins sheet webs lined with cribellar silk. Cribellar silk is a type of adhesive capture thread composed of numerous fibrils that originate from a specialized plate-like spinning organ called the cribellum. The predominant components of spider silks are spidroins, members of a protein family synthesized in silk glands. Here, we use silk gland RNA-Seq and cDNA libraries to infer T. perfuga silks at the protein level. We show that T. perfuga spiders express 13 silk transcripts representing at least five categories of spider silk proteins (spidroins). One category is a candidate for cribellar silk and is thus named cribellar spidroin (CrSp). Studies of ontogenetic changes in web construction and spigot morphology in T. perfuga have documented that after sexual maturation, T. perfuga females continue to make capture webs but males halt web maintenance and cease spinning cribellar silk. Consistent with these observations, our candidate CrSp was expressed only in females. The other four spidroin categories correspond to paralogs of aciniform, ampullate, pyriform, and tubuliform spidroins. These spidroins are associated with egg sac and web construction. Except for the tubuliform spidroin, the spidroins from T. perfuga contain novel combinations of amino acid sequence motifs that have not been observed before in these spidroin types. Characterization of T. perfuga silk genes, particularly CrSp, expand the diversity of the spidroin family and inspire new structure/function hypotheses.


Asunto(s)
Fibroínas/química , Expresión Génica/genética , Seda/química , Animales , Femenino , Fibroínas/genética , Masculino , Filogenia , Maduración Sexual/genética , Maduración Sexual/fisiología , Arañas
8.
Nat Genet ; 49(6): 895-903, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28459453

RESUMEN

Spider silks are the toughest known biological materials, yet are lightweight and virtually invisible to the human immune system, and they thus have revolutionary potential for medicine and industry. Spider silks are largely composed of spidroins, a unique family of structural proteins. To investigate spidroin genes systematically, we constructed the first genome of an orb-weaving spider: the golden orb-weaver (Nephila clavipes), which builds large webs using an extensive repertoire of silks with diverse physical properties. We cataloged 28 Nephila spidroins, representing all known orb-weaver spidroin types, and identified 394 repeated coding motif variants and higher-order repetitive cassette structures unique to specific spidroins. Characterization of spidroin expression in distinct silk gland types indicates that glands can express multiple spidroin types. We find evidence of an alternatively spliced spidroin, a spidroin expressed only in venom glands, evolutionary mechanisms for spidroin diversification, and non-spidroin genes with expression patterns that suggest roles in silk production.


Asunto(s)
Fibroínas/genética , Genoma , Arañas/genética , Empalme Alternativo , Animales , Evolución Molecular , Glándulas Exocrinas/fisiología , Femenino , Expresión Génica , Filogenia , Polimorfismo Genético , Secuencias Repetitivas de Ácidos Nucleicos , Seda/genética , Arañas/anatomía & histología
9.
Zoology (Jena) ; 122: 107-114, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28536006

RESUMEN

Spiders (order Araneae) rely on their silks for essential tasks, such as dispersal, prey capture, and reproduction. Spider silks are largely composed of spidroins, members of a protein family that are synthesized in silk glands. As needed, silk stored in silk glands is extruded through spigots on the spinnerets. Nearly all studies of spider silks have been conducted on females; thus, little is known about male silk biology. To shed light on silk use by males, we compared silk gene expression profiles of mature males to those of females from three cob-web weaving species (Theridiidae). We de novo assembled species-specific male transcriptomes from Latrodectus hesperus, Latrodectus geometricus, and Steatoda grossa followed by differential gene expression analyses. Consistent with their complement of silk spigots, male theridiid spiders express appreciable amounts of aciniform, major ampullate, minor ampullate, and pyriform spidroin genes but not tubuliform spidroin genes. The relative expression levels of particular spidroin genes varied between sexes and species. Because mature males desert their prey-capture webs and become cursorial in their search for mates, we anticipated that major ampullate (dragline) spidroin genes would be the silk genes most highly expressed by males. Indeed, major ampullate spidroin genes had the highest expression in S. grossa males. However, minor ampullate spidroin genes were the most highly expressed spidroin genes in L. geometricus and L. hesperus males. Our expression profiling results suggest species-specific adaptive divergence of silk use by male theridiids.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Seda/fisiología , Arañas/fisiología , Animales , Femenino , Masculino , Factores Sexuales , Especificidad de la Especie , Transcriptoma
10.
BMC Evol Biol ; 17(1): 78, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28288560

RESUMEN

BACKGROUND: Orb-web weaving spiders and their relatives use multiple types of task-specific silks. The majority of spider silk studies have focused on the ultra-tough dragline silk synthesized in major ampullate glands, but other silk types have impressive material properties. For instance, minor ampullate silks of orb-web weaving spiders are as tough as draglines, due to their higher extensibility despite lower strength. Differences in material properties between silk types result from differences in their component proteins, particularly members of the spidroin (spider fibroin) gene family. However, the extent to which variation in material properties within a single silk type can be explained by variation in spidroin sequences is unknown. Here, we compare the minor ampullate spidroins (MiSp) of orb-weavers and cobweb weavers. Orb-web weavers use minor ampullate silk to form the auxiliary spiral of the orb-web while cobweb weavers use it to wrap prey, suggesting that selection pressures on minor ampullate spidroins (MiSp) may differ between the two groups. RESULTS: We report complete or nearly complete MiSp sequences from five cobweb weaving spider species and measure material properties of minor ampullate silks in a subset of these species. We also compare MiSp sequences and silk properties of our cobweb weavers to published data for orb-web weavers. We demonstrate that all our cobweb weavers possess multiple MiSp loci and that one locus is more highly expressed in at least two species. We also find that the proportion of ß-spiral-forming amino acid motifs in MiSp positively correlates with minor ampullate silk extensibility across orb-web and cobweb weavers. CONCLUSIONS: MiSp sequences vary dramatically within and among spider species, and have likely been subject to multiple rounds of gene duplication and concerted evolution, which have contributed to the diverse material properties of minor ampullate silks. Our sequences also provide templates for recombinant silk proteins with tailored properties.


Asunto(s)
Evolución Molecular , Seda/genética , Arañas/genética , Sustitución de Aminoácidos , Animales , Fibroínas/genética , Duplicación de Gen , Filogenia , Arañas/clasificación
11.
J Proteome Res ; 14(10): 4223-31, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26302244

RESUMEN

Spider silk research has largely focused on spidroins, proteins that are the primary components of spider silk fibers. Although a number of spidroins have been characterized, other types of proteins associated with silk synthesis are virtually unknown. Previous analyses of tissue-specific RNA-seq libraries identified 647 predicted genes that were differentially expressed in silk glands of the Western black widow, Latrodectus hesperus. Only ∼5% of these silk-gland specific transcripts (SSTs) encode spidroins; although the remaining predicted genes presumably encode other proteins associated with silk production, this is mostly unverified. Here, we used proteomic analysis of multiple silk glands and dragline silk fiber to investigate the translation of the differentially expressed genes. We find 48 proteins encoded by the differentially expressed transcripts in L. hesperus major ampullate, minor ampullate, and tubuliform silk glands and detect 17 SST encoded proteins in major ampullate silk fibers. The observed proteins include known silk-related proteins, but most are uncharacterized, with no annotation. These unannotated proteins likely include novel silk-associated proteins. Major and minor ampullate glands have the highest overlap of identified proteins, consistent with their shared, distinctive ampullate shape and the overlapping functions of major and minor ampullate silks. Our study substantiates and prioritizes predictions from differential expression analysis of spider silk gland transcriptomes.


Asunto(s)
Proteínas de Insectos/aislamiento & purificación , Proteoma/aislamiento & purificación , ARN Mensajero/genética , Seda/química , Arañas/genética , Animales , Cromatografía Liquida , Quimotripsina/química , Femenino , Regulación de la Expresión Génica , Biblioteca de Genes , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Fragmentos de Péptidos/análisis , Proteolisis , Proteoma/genética , Proteoma/metabolismo , ARN Mensajero/metabolismo , Seda/biosíntesis , Seda/genética , Arañas/metabolismo , Espectrometría de Masas en Tándem , Transcripción Genética , Tripsina/química
12.
Biomacromolecules ; 15(12): 4598-605, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25340514

RESUMEN

Spider silks have outstanding mechanical properties. Most research has focused on dragline silk proteins (major ampullate spidroins, MaSps) from orb-weaving spiders. Using silk gland expression libraries from the haplogyne spider Scytodes thoracica, we discovered two novel spidroins (S. thoracica fibroin 1 and 2). The amino acid composition of S. thoracica silk glands and dragline fibers suggest that fibroin 1 is the major component of S. thoracica dragline silk. Fibroin 1 is dominated by glycine-alanine motifs, and lacks sequence motifs associated with orb-weaver MaSps. We hypothesize fibroin 2 is a piriform or aciniform silk protein, based on amino acid composition, spigot morphology, and phylogenetic analyses. S. thoracica's dragline silk is less tough than previously reported, but is still comparable to other dragline silks. Our analyses suggest that dragline silk proteins evolved multiple times. This demonstrates that spider dragline silk is more diverse than previously understood, providing alternative high performance silk designs.


Asunto(s)
Fibroínas/química , Arañas , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biblioteca de Genes , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA